These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 23398278)

  • 1. Dissolution of brominated epoxy resins by dimethyl sulfoxide to separate waste printed circuit boards.
    Zhu P; Chen Y; Wang L; Qian G; Zhang WJ; Zhou M; Zhou J
    Environ Sci Technol; 2013 Mar; 47(6):2654-60. PubMed ID: 23398278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The separation of waste printed circuit board by dissolving bromine epoxy resin using organic solvent.
    Zhu P; Chen Y; Wang LY; Zhou M; Zhou J
    Waste Manag; 2013 Feb; 33(2):484-8. PubMed ID: 23177567
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new technology for separation and recovery of materials from waste printed circuit boards by dissolving bromine epoxy resins using ionic liquid.
    Zhu P; Chen Y; Wang LY; Qian GY; Zhou M; Zhou J
    J Hazard Mater; 2012 Nov; 239-240():270-8. PubMed ID: 22985818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Treatment of waste printed circuit board by green solvent using ionic liquid.
    Zhu P; Chen Y; Wang LY; Zhou M
    Waste Manag; 2012 Oct; 32(10):1914-8. PubMed ID: 22683227
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new technology for recycling solder from waste printed circuit boards using ionic liquid.
    Zhu P; Chen Y; Wang Ly; Zhou M
    Waste Manag Res; 2012 Nov; 30(11):1222-6. PubMed ID: 22951573
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Liberation of metal clads of waste printed circuit boards by removal of halogenated epoxy resin substrate using dimethylacetamide.
    Verma HR; Singh KK; Mankhand TR
    Waste Manag; 2017 Feb; 60():652-659. PubMed ID: 28041671
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recycling of organic materials and solder from waste printed circuit boards by vacuum pyrolysis-centrifugation coupling technology.
    Zhou Y; Wu W; Qiu K
    Waste Manag; 2011 Dec; 31(12):2569-76. PubMed ID: 21840196
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new technology for recycling materials from waste printed circuit boards.
    Zhou Y; Qiu K
    J Hazard Mater; 2010 Mar; 175(1-3):823-8. PubMed ID: 19939558
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microwave-assisted organic swelling promotes fast and efficient delamination of waste printed circuit boards.
    Monteiro B; Martelo LM; Sousa PMS; Bastos MMSM; Soares HMVM
    Waste Manag; 2021 May; 126():231-238. PubMed ID: 33774583
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel dismantling process of waste printed circuit boards using water-soluble ionic liquid.
    Zeng X; Li J; Xie H; Liu L
    Chemosphere; 2013 Oct; 93(7):1288-94. PubMed ID: 23910241
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dissolution and separation of non-metallic powder from printed circuit boards by using chloride solvent.
    Huang K; Yuan W; Yang Y; Wang X; Xie J; Duan H; Li X; Wang L; Zhang C; Bai J; Wang J; Crittenden JC
    Waste Manag; 2021 Mar; 123():60-68. PubMed ID: 33561771
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microwave-assisted chemical recovery of glass fiber and epoxy resin from non-metallic components in waste printed circuit boards.
    Huang K; Zheng J; Yuan W; Wang X; Song Q; Li Y; Crittenden JC; Wang L; Wang J
    Waste Manag; 2021 Apr; 124():8-16. PubMed ID: 33592321
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of a recycling process for printed circuit board by physical separation and heat treatment.
    Fujita T; Ono H; Dodbiba G; Yamaguchi K
    Waste Manag; 2014 Jul; 34(7):1264-73. PubMed ID: 24703485
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recovery of materials from waste printed circuit boards by vacuum pyrolysis and vacuum centrifugal separation.
    Zhou Y; Wu W; Qiu K
    Waste Manag; 2010 Nov; 30(11):2299-304. PubMed ID: 20655190
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Separating and recovering Pb from copper-rich particles of crushed waste printed circuit boards by evaporation and condensation.
    Zhan L; Xu Z
    Environ Sci Technol; 2011 Jun; 45(12):5359-65. PubMed ID: 21595432
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel approach to recycling of glass fibers from nonmetal materials of waste printed circuit boards.
    Zheng Y; Shen Z; Ma S; Cai C; Zhao X; Xing Y
    J Hazard Mater; 2009 Oct; 170(2-3):978-82. PubMed ID: 19520504
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of supercritical water to decompose brominated epoxy resin and environmental friendly recovery of metals from waste memory module.
    Li K; Xu Z
    Environ Sci Technol; 2015 Feb; 49(3):1761-7. PubMed ID: 25582426
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of glass-nonmetals of waste printed circuit boards to produce phenolic moulding compound.
    Guo J; Rao Q; Xu Z
    J Hazard Mater; 2008 May; 153(1-2):728-34. PubMed ID: 17949900
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using vacuum pyrolysis and mechanical processing for recycling waste printed circuit boards.
    Long L; Sun S; Zhong S; Dai W; Liu J; Song W
    J Hazard Mater; 2010 May; 177(1-3):626-32. PubMed ID: 20060640
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advanced degradation of brominated epoxy resin and simultaneous transformation of glass fiber from waste printed circuit boards by improved supercritical water oxidation processes.
    Liu K; Zhang Z; Zhang FS
    Waste Manag; 2016 Oct; 56():423-30. PubMed ID: 27287009
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.