BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 23398683)

  • 21. Intramolecular regulatory switch in ZAP-70: analogy with receptor tyrosine kinases.
    Brdicka T; Kadlecek TA; Roose JP; Pastuszak AW; Weiss A
    Mol Cell Biol; 2005 Jun; 25(12):4924-33. PubMed ID: 15923611
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The protist, Monosiga brevicollis, has a tyrosine kinase signaling network more elaborate and diverse than found in any known metazoan.
    Manning G; Young SL; Miller WT; Zhai Y
    Proc Natl Acad Sci U S A; 2008 Jul; 105(28):9674-9. PubMed ID: 18621719
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Arginine kinase isoforms in the closest protozoan relative of metazoans.
    Hoffman GG; Ellington WR
    Comp Biochem Physiol Part D Genomics Proteomics; 2011 Jun; 6(2):171-7. PubMed ID: 21439926
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Altered exon usage in the juxtamembrane domain of mouse and human RON regulates receptor activity and signaling specificity.
    Wei X; Hao L; Ni S; Liu Q; Xu J; Correll PH
    J Biol Chem; 2005 Dec; 280(48):40241-51. PubMed ID: 16166096
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular cloning of a tyrosine kinase gene from the marine sponge Geodia cydonium: a new member belonging to the receptor tyrosine kinase class II family.
    Schäcke H; Schröder HC; Gamulin V; Rinkevich B; Müller IM; Müller WE
    Mol Membr Biol; 1994; 11(2):101-7. PubMed ID: 7920862
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tyrosine kinase signaling and the emergence of multicellularity.
    Miller WT
    Biochim Biophys Acta; 2012 Jun; 1823(6):1053-7. PubMed ID: 22480439
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Gene structure and function of tyrosine kinases in the marine sponge Geodia cydonium: autapomorphic characters in Metazoa.
    Müller WE; Kruse M; Blumbach B; Skorokhod A; Müller IM
    Gene; 1999 Sep; 238(1):179-93. PubMed ID: 10570996
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Earliest Holozoan expansion of phosphotyrosine signaling.
    Suga H; Torruella G; Burger G; Brown MW; Ruiz-Trillo I
    Mol Biol Evol; 2014 Mar; 31(3):517-28. PubMed ID: 24307687
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Functional development of Src tyrosine kinases during evolution from a unicellular ancestor to multicellular animals.
    Segawa Y; Suga H; Iwabe N; Oneyama C; Akagi T; Miyata T; Okada M
    Proc Natl Acad Sci U S A; 2006 Aug; 103(32):12021-6. PubMed ID: 16873552
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Autophosphorylation induces autoactivation and a decrease in the Src homology 2 domain accessibility of the Lyn protein kinase.
    Sotirellis N; Johnson TM; Hibbs ML; Stanley IJ; Stanley E; Dunn AR; Cheng HC
    J Biol Chem; 1995 Dec; 270(50):29773-80. PubMed ID: 8530369
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Uncoupling ligand-dependent and -independent mechanisms for mitogen-activated protein kinase activation by the murine Ron receptor tyrosine kinase.
    Wei X; Ni S; Correll PH
    J Biol Chem; 2005 Oct; 280(42):35098-107. PubMed ID: 16103119
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evolution of the phospho-tyrosine signaling machinery in premetazoan lineages.
    Pincus D; Letunic I; Bork P; Lim WA
    Proc Natl Acad Sci U S A; 2008 Jul; 105(28):9680-4. PubMed ID: 18599463
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Src kinases and ERK activate distinct responses to Stitcher receptor tyrosine kinase signaling during wound healing in Drosophila.
    Tsarouhas V; Yao L; Samakovlis C
    J Cell Sci; 2014 Apr; 127(Pt 8):1829-39. PubMed ID: 24522188
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evolution of key cell signaling and adhesion protein families predates animal origins.
    King N; Hittinger CT; Carroll SB
    Science; 2003 Jul; 301(5631):361-3. PubMed ID: 12869759
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of TrkB autophosphorylation sites and evidence that phospholipase C-gamma 1 is a substrate of the TrkB receptor.
    Middlemas DS; Meisenhelder J; Hunter T
    J Biol Chem; 1994 Feb; 269(7):5458-66. PubMed ID: 8106527
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Specific inhibition of a pathogenic receptor tyrosine kinase by its transmembrane domain.
    He L; Shobnam N; Hristova K
    Biochim Biophys Acta; 2011 Jan; 1808(1):253-9. PubMed ID: 20713021
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Autoinhibitory mechanisms in receptor tyrosine kinases.
    Hubbard SR
    Front Biosci; 2002 Feb; 7():d330-40. PubMed ID: 11815286
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A unique autophosphorylation site on Tie2/Tek mediates Dok-R phosphotyrosine binding domain binding and function.
    Jones N; Chen SH; Sturk C; Master Z; Tran J; Kerbel RS; Dumont DJ
    Mol Cell Biol; 2003 Apr; 23(8):2658-68. PubMed ID: 12665569
    [TBL] [Abstract][Full Text] [Related]  

  • 39. p85 subunit of PI3 kinase does not bind to human Flt3 receptor, but associates with SHP2, SHIP, and a tyrosine-phosphorylated 100-kDa protein in Flt3 ligand-stimulated hematopoietic cells.
    Zhang S; Broxmeyer HE
    Biochem Biophys Res Commun; 1999 Jan; 254(2):440-5. PubMed ID: 9918857
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of the major autophosphorylation sites of Nyk/Mer, an NCAM-related receptor tyrosine kinase.
    Ling L; Templeton D; Kung HJ
    J Biol Chem; 1996 Aug; 271(31):18355-62. PubMed ID: 8702477
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.