BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

741 related articles for article (PubMed ID: 23398717)

  • 1. Feasibility of xylose fermentation by engineered Saccharomyces cerevisiae overexpressing endogenous aldose reductase (GRE3), xylitol dehydrogenase (XYL2), and xylulokinase (XYL3) from Scheffersomyces stipitis.
    Kim SR; Kwee NR; Kim H; Jin YS
    FEMS Yeast Res; 2013 May; 13(3):312-21. PubMed ID: 23398717
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Xylose fermentation by Saccharomyces cerevisiae using endogenous xylose-assimilating genes.
    Konishi J; Fukuda A; Mutaguchi K; Uemura T
    Biotechnol Lett; 2015 Aug; 37(8):1623-30. PubMed ID: 25994575
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High expression of XYL2 coding for xylitol dehydrogenase is necessary for efficient xylose fermentation by engineered Saccharomyces cerevisiae.
    Kim SR; Ha SJ; Kong II; Jin YS
    Metab Eng; 2012 Jul; 14(4):336-43. PubMed ID: 22521925
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of NADH-preferring xylose reductase expression on ethanol production from xylose in xylose-metabolizing recombinant Saccharomyces cerevisiae.
    Lee SH; Kodaki T; Park YC; Seo JH
    J Biotechnol; 2012 Apr; 158(4):184-91. PubMed ID: 21699927
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Xylose and xylose/glucose co-fermentation by recombinant Saccharomyces cerevisiae strains expressing individual hexose transporters.
    Gonçalves DL; Matsushika A; de Sales BB; Goshima T; Bon EP; Stambuk BU
    Enzyme Microb Technol; 2014 Sep; 63():13-20. PubMed ID: 25039054
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physiological and enzymatic comparison between Pichia stipitis and recombinant Saccharomyces cerevisiae on xylose fermentation.
    Guo C; Jiang N
    World J Microbiol Biotechnol; 2013 Mar; 29(3):541-7. PubMed ID: 23180545
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative xylose metabolism among the Ascomycetes C. albicans, S. stipitis and S. cerevisiae.
    Harcus D; Dignard D; Lépine G; Askew C; Raymond M; Whiteway M; Wu C
    PLoS One; 2013; 8(11):e80733. PubMed ID: 24236198
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Xylulokinase overexpression in two strains of Saccharomyces cerevisiae also expressing xylose reductase and xylitol dehydrogenase and its effect on fermentation of xylose and lignocellulosic hydrolysate.
    Johansson B; Christensson C; Hobley T; Hahn-Hägerdal B
    Appl Environ Microbiol; 2001 Sep; 67(9):4249-55. PubMed ID: 11526030
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering.
    Karhumaa K; Hahn-Hägerdal B; Gorwa-Grauslund MF
    Yeast; 2005 Apr; 22(5):359-68. PubMed ID: 15806613
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Implementation of a transhydrogenase-like shunt to counter redox imbalance during xylose fermentation in Saccharomyces cerevisiae.
    Suga H; Matsuda F; Hasunuma T; Ishii J; Kondo A
    Appl Microbiol Biotechnol; 2013 Feb; 97(4):1669-78. PubMed ID: 22851014
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative study on a series of recombinant flocculent Saccharomyces cerevisiae strains with different expression levels of xylose reductase and xylulokinase.
    Matsushika A; Sawayama S
    Enzyme Microb Technol; 2011 May; 48(6-7):466-71. PubMed ID: 22113018
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct ethanol production from hemicellulosic materials of rice straw by use of an engineered yeast strain codisplaying three types of hemicellulolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells.
    Sakamoto T; Hasunuma T; Hori Y; Yamada R; Kondo A
    J Biotechnol; 2012 Apr; 158(4):203-10. PubMed ID: 21741417
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Boost in bioethanol production using recombinant Saccharomyces cerevisiae with mutated strictly NADPH-dependent xylose reductase and NADP(+)-dependent xylitol dehydrogenase.
    Khattab SM; Saimura M; Kodaki T
    J Biotechnol; 2013 Jun; 165(3-4):153-6. PubMed ID: 23578809
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression of protein engineered NADP+-dependent xylitol dehydrogenase increases ethanol production from xylose in recombinant Saccharomyces cerevisiae.
    Matsushika A; Watanabe S; Kodaki T; Makino K; Inoue H; Murakami K; Takimura O; Sawayama S
    Appl Microbiol Biotechnol; 2008 Nov; 81(2):243-55. PubMed ID: 18751695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Specific expression patterns of xyl1, xyl2 and xyl3 in response to different sugars in Pichia stipitis.
    Han JH; Park JY; Kang HW; Choi GW; Chung BW; Min J
    J Microbiol Biotechnol; 2010 May; 20(5):946-9. PubMed ID: 20519920
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High activity of xylose reductase and xylitol dehydrogenase improves xylose fermentation by recombinant Saccharomyces cerevisiae.
    Karhumaa K; Fromanger R; Hahn-Hägerdal B; Gorwa-Grauslund MF
    Appl Microbiol Biotechnol; 2007 Jan; 73(5):1039-46. PubMed ID: 16977466
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving xylitol yield by deletion of endogenous xylitol-assimilating genes: a study of industrial Saccharomyces cerevisiae in fermentation of glucose and xylose.
    Yang BX; Xie CY; Xia ZY; Wu YJ; Gou M; Tang YQ
    FEMS Yeast Res; 2020 Dec; 20(8):. PubMed ID: 33201998
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Endogenous NADPH-dependent aldose reductase activity influences product formation during xylose consumption in recombinant Saccharomyces cerevisiae.
    Träff-Bjerre KL; Jeppsson M; Hahn-Hägerdal B; Gorwa-Grauslund MF
    Yeast; 2004 Jan; 21(2):141-50. PubMed ID: 14755639
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioethanol production performance of five recombinant strains of laboratory and industrial xylose-fermenting Saccharomyces cerevisiae.
    Matsushika A; Inoue H; Murakami K; Takimura O; Sawayama S
    Bioresour Technol; 2009 Apr; 100(8):2392-8. PubMed ID: 19128960
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of SHF and SSF processes from steam-exploded wheat straw for ethanol production by xylose-fermenting and robust glucose-fermenting Saccharomyces cerevisiae strains.
    Tomás-Pejó E; Oliva JM; Ballesteros M; Olsson L
    Biotechnol Bioeng; 2008 Aug; 100(6):1122-31. PubMed ID: 18383076
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 38.