BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 23398786)

  • 1. Daily physical activity assessment with accelerometers: new insights and validation studies.
    Plasqui G; Bonomi AG; Westerterp KR
    Obes Rev; 2013 Jun; 14(6):451-62. PubMed ID: 23398786
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physical activity assessment with accelerometers: an evaluation against doubly labeled water.
    Plasqui G; Westerterp KR
    Obesity (Silver Spring); 2007 Oct; 15(10):2371-9. PubMed ID: 17925461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Training-induced changes in daily energy expenditure: Methodological evaluation using wrist-worn accelerometer, heart rate monitor, and doubly labeled water technique.
    Kinnunen H; Häkkinen K; Schumann M; Karavirta L; Westerterp KR; Kyröläinen H
    PLoS One; 2019; 14(7):e0219563. PubMed ID: 31291373
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The use of uniaxial accelerometry for the assessment of physical-activity-related energy expenditure: a validation study against whole-body indirect calorimetry.
    Kumahara H; Schutz Y; Ayabe M; Yoshioka M; Yoshitake Y; Shindo M; Ishii K; Tanaka H
    Br J Nutr; 2004 Feb; 91(2):235-43. PubMed ID: 14756909
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of activity-related energy expenditure using accelerometer-derived physical activity under free-living conditions: a systematic review.
    Jeran S; Steinbrecher A; Pischon T
    Int J Obes (Lond); 2016 Aug; 40(8):1187-97. PubMed ID: 27163747
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physical activity-related energy expenditure with the RT3 and TriTrac accelerometers in overweight adults.
    Jacobi D; Perrin AE; Grosman N; Doré MF; Normand S; Oppert JM; Simon C
    Obesity (Silver Spring); 2007 Apr; 15(4):950-6. PubMed ID: 17426330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simplification of the method of assessing daily and nightly energy expenditure in children, using heart rate monitoring calibrated against open circuit indirect calorimetry.
    Beghin L; Budniok T; Vaksman G; Boussard-Delbecque L; Michaud L; Turck D; Gottrand F
    Clin Nutr; 2000 Dec; 19(6):425-35. PubMed ID: 11104594
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reliable assessment of physical activity in disease: an update on activity monitors.
    Westerterp KR
    Curr Opin Clin Nutr Metab Care; 2014 Sep; 17(5):401-6. PubMed ID: 25105926
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of Total Energy Expenditure and Physical Activity Using Activity Monitors.
    Plasqui G
    J Nutr Sci Vitaminol (Tokyo); 2022; 68(Supplement):S49-S51. PubMed ID: 36437015
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A triaxial accelerometer and portable data processing unit for the assessment of daily physical activity.
    Bouten CV; Koekkoek KT; Verduin M; Kodde R; Janssen JD
    IEEE Trans Biomed Eng; 1997 Mar; 44(3):136-47. PubMed ID: 9216127
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physical activity questionnaire for adolescents validated against doubly labelled water.
    Arvidsson D; Slinde F; Hulthèn L
    Eur J Clin Nutr; 2005 Mar; 59(3):376-83. PubMed ID: 15536471
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wrist-worn accelerometers in assessment of energy expenditure during intensive training.
    Kinnunen H; Tanskanen M; Kyröläinen H; Westerterp KR
    Physiol Meas; 2012 Nov; 33(11):1841-54. PubMed ID: 23110981
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Usefulness of motion sensors to estimate energy expenditure in children and adults: a narrative review of studies using DLW.
    Sardinha LB; Júdice PB
    Eur J Clin Nutr; 2017 Mar; 71(3):331-339. PubMed ID: 28145419
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physical activity as a determinant of total energy expenditure in critically ill children.
    van der Kuip M; de Meer K; Westerterp KR; Gemke RJ
    Clin Nutr; 2007 Dec; 26(6):744-51. PubMed ID: 17949862
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimation of resistance exercise energy expenditure using accelerometry.
    Rawson ES; Walsh TM
    Med Sci Sports Exerc; 2010 Mar; 42(3):622-8. PubMed ID: 19952824
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impacts of vigorous and non-vigorous activity on daily energy expenditure.
    Westerterp KR
    Proc Nutr Soc; 2003 Aug; 62(3):645-50. PubMed ID: 14692600
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Smart approaches for assessing free-living energy expenditure following identification of types of physical activity.
    Plasqui G
    Obes Rev; 2017 Feb; 18 Suppl 1():50-55. PubMed ID: 28164455
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Validation of accelerometer placement to capture energy expenditure using doubly labeled water.
    Dougherty RJ; Liu F; Etzkorn L; Wanigatunga AA; Walter PJ; Knuth ND; Schrack JA; Ferrucci L
    Appl Physiol Nutr Metab; 2022 Oct; 47(10):1045-1049. PubMed ID: 35939837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New measurements of energy expenditure and physical activity in chronic kidney disease.
    Mafra D; Deleaval P; Teta D; Cleaud C; Perrot MJ; Rognon S; Thevenet M; Arkouche W; Jolivot A; Fouque D
    J Ren Nutr; 2009 Jan; 19(1):16-9. PubMed ID: 19121764
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of heart rate and physical activity recall with doubly labeled water in obese women.
    Racette SB; Schoeller DA; Kushner RF
    Med Sci Sports Exerc; 1995 Jan; 27(1):126-33. PubMed ID: 7898328
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.