These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 2339883)

  • 1. Phenol and trichloroethylene degradation by Pseudomonas cepacia G4: kinetics and interactions between substrates.
    Folsom BR; Chapman PJ; Pritchard PH
    Appl Environ Microbiol; 1990 May; 56(5):1279-85. PubMed ID: 2339883
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance characterization of a model bioreactor for the biodegradation of trichloroethylene by Pseudomonas cepacia G4.
    Folsom BR; Chapman PJ
    Appl Environ Microbiol; 1991 Jun; 57(6):1602-8. PubMed ID: 1872599
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diversity in kinetics of trichloroethylene-degrading activities exhibited by phenol-degrading bacteria.
    Futamata H; Harayama S; Watanabe K
    Appl Microbiol Biotechnol; 2001 Mar; 55(2):248-53. PubMed ID: 11330722
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Degradation of trichloroethylene by Pseudomonas cepacia G4 and the constitutive mutant strain G4 5223 PR1 in aquifer microcosms.
    Krumme ML; Timmis KN; Dwyer DF
    Appl Environ Microbiol; 1993 Aug; 59(8):2746-9. PubMed ID: 7690223
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selection of a Pseudomonas cepacia strain constitutive for the degradation of trichloroethylene.
    Shields MS; Reagin MJ
    Appl Environ Microbiol; 1992 Dec; 58(12):3977-83. PubMed ID: 1282314
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trichloroethylene degradation and mineralization by pseudomonads and Methylosinus trichosporium OB3b.
    Sun AK; Wood TK
    Appl Microbiol Biotechnol; 1996 Mar; 45(1-2):248-56. PubMed ID: 8920197
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physiological and functional diversity of phenol degraders isolated from phenol-grown aerobic granules: Phenol degradation kinetics and trichloroethylene co-metabolic activities.
    Zhang Y; Tay JH
    J Environ Manage; 2016 Mar; 169():34-45. PubMed ID: 26720328
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cometabolic degradation of trichloroethylene by Burkholderia cepacia G4 with poplar leaf homogenate.
    Kang JW; Doty SL
    Can J Microbiol; 2014 Jul; 60(7):487-90. PubMed ID: 24992516
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aerobic degradation of trichloroethylene by co-metabolism using phenol and gasoline as growth substrates.
    Li Y; Li B; Wang CP; Fan JZ; Sun HW
    Int J Mol Sci; 2014 May; 15(5):9134-48. PubMed ID: 24857922
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutants of Pseudomonas cepacia G4 defective in catabolism of aromatic compounds and trichloroethylene.
    Shields MS; Montgomery SO; Cuskey SM; Chapman PJ; Pritchard PH
    Appl Environ Microbiol; 1991 Jul; 57(7):1935-41. PubMed ID: 1892384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trichloroethylene degradation by toluene-oxidizing bacteria grown on non-aromatic substrates.
    Yeager CM; Arthur KM; Bottomley PJ; Arp DJ
    Biodegradation; 2004 Feb; 15(1):19-28. PubMed ID: 14971854
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing trichloroethylene degradation using non-aromatic compounds as growth substrates.
    Kim S; Hwang J; Chung J; Bae W
    J Hazard Mater; 2014 Jun; 275():99-106. PubMed ID: 24857894
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biodegradation of trichloroethylene and involvement of an aromatic biodegradative pathway.
    Nelson MJ; Montgomery SO; Mahaffey WR; Pritchard PH
    Appl Environ Microbiol; 1987 May; 53(5):949-54. PubMed ID: 3606099
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cometabolic degradation kinetics of TCE and phenol by Pseudomonas putida.
    Chen YM; Lin TF; Huang C; Lin JC
    Chemosphere; 2008 Aug; 72(11):1671-80. PubMed ID: 18586301
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trichloroethylene degradation by two independent aromatic-degrading pathways in Alcaligenes eutrophus JMP134.
    Harker AR; Kim Y
    Appl Environ Microbiol; 1990 Apr; 56(4):1179-81. PubMed ID: 2339875
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cometabolic degradation of trichloroethylene by Pseudomonas cepacia G4 in a chemostat with toluene as the primary substrate.
    Landa AS; Sipkema EM; Weijma J; Beenackers AA; Dolfing J; Janssen DB
    Appl Environ Microbiol; 1994 Sep; 60(9):3368-74. PubMed ID: 7524444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isopropylbenzene (cumene)--a new substrate for the isolation of trichloroethene-degrading bacteria.
    Dabrock B; Riedel J; Bertram J; Gottschalk G
    Arch Microbiol; 1992; 158(1):9-13. PubMed ID: 1444717
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trichloroethylene degradation by butane-oxidizing bacteria causes a spectrum of toxic effects.
    Halsey KH; Sayavedra-Soto LA; Bottomley PJ; Arp DJ
    Appl Microbiol Biotechnol; 2005 Oct; 68(6):794-801. PubMed ID: 15754184
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cytotoxicity associated with trichloroethylene oxidation in Burkholderia cepacia G4.
    Yeager CM; Bottomley PJ; Arp DJ
    Appl Environ Microbiol; 2001 May; 67(5):2107-15. PubMed ID: 11319088
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aerobic, phenol-induced TCE degradation in completely mixed, continuous-culture reactors.
    Coyle CG; Parkin GF; Gibson DT
    Biodegradation; 1993; 4(1):59-69. PubMed ID: 7763855
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.