These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 2339889)
21. Pristine environments harbor a new group of oligotrophic 2,4-dichlorophenoxyacetic acid-degrading bacteria. Kamagata Y; Fulthorpe RR; Tamura K; Takami H; Forney LJ; Tiedje JM Appl Environ Microbiol; 1997 Jun; 63(6):2266-72. PubMed ID: 9172346 [TBL] [Abstract][Full Text] [Related]
22. [Microbiological transformation and degradation of pesticides]. Skriabin GK; Golovleva LA Izv Akad Nauk SSSR Biol; 1975; (6):805-19. PubMed ID: 1206144 [No Abstract] [Full Text] [Related]
23. 2,4-Dichlorophenoxyacetic acid (2,4-D)- and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T)-degrading gene cluster in the soybean root-nodulating bacterium Bradyrhizobium elkanii USDA94. Hayashi S; Sano T; Suyama K; Itoh K Microbiol Res; 2016; 188-189():62-71. PubMed ID: 27296963 [TBL] [Abstract][Full Text] [Related]
24. A rapid method to screen degradation ability in chlorophenoxyalkanoic acid herbicide-degrading bacteria. Smejkal CW; Vallaeys T; Burton SK; Lappin-Scott HM Lett Appl Microbiol; 2001 Apr; 32(4):273-7. PubMed ID: 11298940 [TBL] [Abstract][Full Text] [Related]
25. Capture of a catabolic plasmid that encodes only 2,4-dichlorophenoxyacetic acid:alpha-ketoglutaric acid dioxygenase (TfdA) by genetic complementation. Top EM; Maltseva OV; Forney LJ Appl Environ Microbiol; 1996 Jul; 62(7):2470-6. PubMed ID: 8779586 [TBL] [Abstract][Full Text] [Related]
26. Duplication of a 2,4-dichlorophenoxyacetic acid monooxygenase gene in Alcaligenes eutrophus JMP134(pJP4). Perkins EJ; Lurquin PF J Bacteriol; 1988 Dec; 170(12):5669-72. PubMed ID: 3056910 [TBL] [Abstract][Full Text] [Related]
27. Biodegradation of 2,4,5-trichlorophenoxyacetic acid by Burkholderia cepacia strain AC1100: evolutionary insight. Daubaras DL; Danganan CE; Hübner A; Ye RW; Hendrickson W; Chakrabarty AM Gene; 1996 Nov; 179(1):1-8. PubMed ID: 8955624 [TBL] [Abstract][Full Text] [Related]
28. Widespread occurrence of the tfd-II genes in soil bacteria revealed by nucleotide sequence analysis of 2,4-dichlorophenoxyacetic acid degradative plasmids pDB1 and p712. Kim DU; Kim MS; Lim JS; Ka JO Plasmid; 2013 May; 69(3):243-8. PubMed ID: 23376020 [TBL] [Abstract][Full Text] [Related]
29. Rapid Biodegradation of the Herbicide 2,4-Dichlorophenoxyacetic Acid by Cupriavidus gilardii T-1. Wu X; Wang W; Liu J; Pan D; Tu X; Lv P; Wang Y; Cao H; Wang Y; Hua R J Agric Food Chem; 2017 May; 65(18):3711-3720. PubMed ID: 28434228 [TBL] [Abstract][Full Text] [Related]
30. Nucleotide sequence and functional analysis of the genes encoding 2,4,5-trichlorophenoxyacetic acid oxygenase in Pseudomonas cepacia AC1100. Danganan CE; Ye RW; Daubaras DL; Xun L; Chakrabarty AM Appl Environ Microbiol; 1994 Nov; 60(11):4100-6. PubMed ID: 7527626 [TBL] [Abstract][Full Text] [Related]
31. Regulation of 2,4,5-trichlorophenoxyacetic acid and chlorophenol metabolism in Pseudomonas cepacia AC1100. Karns JS; Duttagupta S; Chakrabarty AM Appl Environ Microbiol; 1983 Nov; 46(5):1182-6. PubMed ID: 6651298 [TBL] [Abstract][Full Text] [Related]
32. Degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) by fungi originating from Vietnam. Nguyen TLA; Dao ATN; Dang HTC; Koekkoek J; Brouwer A; de Boer TE; van Spanning RJM Biodegradation; 2022 Jun; 33(3):301-316. PubMed ID: 35499742 [TBL] [Abstract][Full Text] [Related]
33. Isolation and characterization of a new plasmid from a Flavobacterium sp. which carries the genes for degradation of 2,4-dichlorophenoxyacetate. Chaudhry GR; Huang GH J Bacteriol; 1988 Sep; 170(9):3897-902. PubMed ID: 2842290 [TBL] [Abstract][Full Text] [Related]
34. Natural selection for 2,4,5-trichlorophenoxyacetic acid mineralizing bacteria in agent orange contaminated soil. Rice JF; Menn FM; Hay AG; Sanseverino J; Sayler GS Biodegradation; 2005 Dec; 16(6):501-12. PubMed ID: 15865343 [TBL] [Abstract][Full Text] [Related]
36. Molecular characterization of a deletion/duplication rearrangement in tfd genes from Ralstonia eutropha JMP134(pJP4) that improves growth on 3-chlorobenzoic acid but abolishes growth on 2,4-dichlorophenoxyacetic acid. Clément P; Pieper DH; González B Microbiology (Reading); 2001 Aug; 147(Pt 8):2141-2148. PubMed ID: 11495991 [TBL] [Abstract][Full Text] [Related]
37. [Bioaugmentation of bioreactors with a pJP4 receiving transconjugant to enhance the removal of 2,4-D]. Quan XC; Tang H; Ma JY Huan Jing Ke Xue; 2011 Jul; 32(7):2152-7. PubMed ID: 21922845 [TBL] [Abstract][Full Text] [Related]
39. Role of eukaryotic microbiota in soil survival and catabolic performance of the 2,4-D herbicide degrading bacteria Cupriavidus necator JMP134. Manzano M; Morán AC; Tesser B; González B Antonie Van Leeuwenhoek; 2007 Feb; 91(2):115-26. PubMed ID: 17043913 [TBL] [Abstract][Full Text] [Related]
40. Genes for 2,4,5-trichlorophenoxyacetic acid metabolism in Burkholderia cepacia AC1100: characterization of the tftC and tftD genes and locations of the tft operons on multiple replicons. Hübner A; Danganan CE; Xun L; Chakrabarty AM; Hendrickson W Appl Environ Microbiol; 1998 Jun; 64(6):2086-93. PubMed ID: 9603818 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]