These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 2339891)
1. Trehalose levels and survival ratio of freeze-tolerant versus freeze-sensitive yeasts. Hino A; Mihara K; Nakashima K; Takano H Appl Environ Microbiol; 1990 May; 56(5):1386-91. PubMed ID: 2339891 [TBL] [Abstract][Full Text] [Related]
2. Improving the freeze tolerance of bakers' yeast by loading with trehalose. Hirasawa R; Yokoigawa K; Isobe Y; Kawai H Biosci Biotechnol Biochem; 2001 Mar; 65(3):522-6. PubMed ID: 11330663 [TBL] [Abstract][Full Text] [Related]
3. Leavening ability and freeze tolerance of yeasts isolated from traditional corn and rye bread doughs. Almeida MJ; Pais C Appl Environ Microbiol; 1996 Dec; 62(12):4401-4. PubMed ID: 8953712 [TBL] [Abstract][Full Text] [Related]
4. Simple improvement in freeze-tolerance of bakers' yeast with poly-gamma-glutamate. Yokoigawa K; Sato M; Soda K J Biosci Bioeng; 2006 Sep; 102(3):215-9. PubMed ID: 17046536 [TBL] [Abstract][Full Text] [Related]
5. Lipid composition of commercial bakers' yeasts having different freeze-tolerance in frozen dough. Murakami Y; Yokoigawa K; Kawai F; Kawai H Biosci Biotechnol Biochem; 1996 Nov; 60(11):1874-6. PubMed ID: 8987866 [TBL] [Abstract][Full Text] [Related]
6. The relationship of freeze tolerance with intracellular compounds in baker's yeasts. Shi X; Miao Y; Chen JY; Chen J; Li W; He X; Wang J Appl Biochem Biotechnol; 2014 Mar; 172(6):3042-53. PubMed ID: 24482281 [TBL] [Abstract][Full Text] [Related]
7. Effects of ice-seeding temperature and intracellular trehalose contents on survival of frozen Saccharomyces cerevisiae cells. Nakamura T; Takagi H; Shima J Cryobiology; 2009 Apr; 58(2):170-4. PubMed ID: 19126409 [TBL] [Abstract][Full Text] [Related]
8. Intracellular trehalose accumulation via the Agt1 transporter promotes freeze-thaw tolerance in Saccharomyces cerevisiae. Chen A; Gibney PA J Appl Microbiol; 2022 Oct; 133(4):2390-2402. PubMed ID: 35801661 [TBL] [Abstract][Full Text] [Related]
9. Preservation of frozen yeast cells by trehalose. Diniz-Mendes L; Bernardes E; de Araujo PS; Panek AD; Paschoalin VM Biotechnol Bioeng; 1999 Dec; 65(5):572-8. PubMed ID: 10516583 [TBL] [Abstract][Full Text] [Related]
10. Characterization of a new set of mutants deficient in fermentation-induced loss of stress resistance for use in frozen dough applications. Van Dijck P; Gorwa MF; Lemaire K; Teunissen A; Versele M; Colombo S; Dumortier F; Ma P; Tanghe A; Loiez A; Thevelein JM Int J Food Microbiol; 2000 Apr; 55(1-3):187-92. PubMed ID: 10791742 [TBL] [Abstract][Full Text] [Related]
11. Isolation and characterization of a freeze-tolerant diploid derivative of an industrial baker's yeast strain and its use in frozen doughs. Teunissen A; Dumortier F; Gorwa MF; Bauer J; Tanghe A; Loïez A; Smet P; Van Dijck P; Thevelein JM Appl Environ Microbiol; 2002 Oct; 68(10):4780-7. PubMed ID: 12324320 [TBL] [Abstract][Full Text] [Related]
12. Simultaneous accumulation of proline and trehalose in industrial baker's yeast enhances fermentation ability in frozen dough. Sasano Y; Haitani Y; Hashida K; Ohtsu I; Shima J; Takagi H J Biosci Bioeng; 2012 May; 113(5):592-5. PubMed ID: 22280966 [TBL] [Abstract][Full Text] [Related]
13. Stress co-tolerance and trehalose content in baking strains of Saccharomyces cerevisiae. Lewis JG; Learmonth RP; Attfield PV; Watson K J Ind Microbiol Biotechnol; 1997 Jan; 18(1):30-6. PubMed ID: 9079286 [TBL] [Abstract][Full Text] [Related]
14. Influence of freezing temperatures prior to freeze-drying on viability of yeasts and lactic acid bacteria isolated from wine. Polo L; Mañes-Lázaro R; Olmeda I; Cruz-Pio LE; Medina Á; Ferrer S; Pardo I J Appl Microbiol; 2017 Jun; 122(6):1603-1614. PubMed ID: 28375570 [TBL] [Abstract][Full Text] [Related]
15. Selection of yeasts for breadmaking by the frozen-dough method. Oda Y; Uno K; Ohta S Appl Environ Microbiol; 1986 Oct; 52(4):941-3. PubMed ID: 16347187 [TBL] [Abstract][Full Text] [Related]
16. Water stress plating hypersensitivity of yeasts: protective role of trehalose in Saccharomyces cerevisiae. Mackenzie KF; Singh KK; Brown AD J Gen Microbiol; 1988 Jun; 134(6):1661-6. PubMed ID: 3065453 [TBL] [Abstract][Full Text] [Related]
17. Commercial baker's yeast stability as affected by intracellular content of trehalose, dehydration procedure and the physical properties of external matrices. Cerrutti P; Segovia de Huergo M; Galvagno M; Schebor C; del Pilar Buera M Appl Microbiol Biotechnol; 2000 Oct; 54(4):575-80. PubMed ID: 11092635 [TBL] [Abstract][Full Text] [Related]
18. Construction from a single parent of baker's yeast strains with high freeze tolerance and fermentative activity in both lean and sweet doughs. Nakagawa S; Ouchi K Appl Environ Microbiol; 1994 Oct; 60(10):3499-502. PubMed ID: 7986027 [TBL] [Abstract][Full Text] [Related]
19. Sun X; Zhang J; Fan ZH; Xiao P; Liu SN; Li RP; Zhu WB; Huang L J Agric Food Chem; 2019 Aug; 67(32):8986-8993. PubMed ID: 31347835 [TBL] [Abstract][Full Text] [Related]
20. Cold acclimation and cryoprotectants in a freeze-tolerant Antarctic nematode, Panagrolaimus davidi. Wharton DA; Judge KF; Worland MR J Comp Physiol B; 2000 Jun; 170(4):321-7. PubMed ID: 10935523 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]