These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 23398945)

  • 21. Low carotid artery wall shear stress is independently associated with brain white-matter hyperintensities and cognitive impairment in older patients.
    Liu Z; Zhao Y; Wang X; Zhang H; Cui Y; Diao Y; Xiu J; Sun X; Jiang G
    Atherosclerosis; 2016 Apr; 247():78-86. PubMed ID: 26868512
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Assessment of wall shear stress in the common carotid artery of healthy subjects using 3.0-tesla magnetic resonance.
    Sui B; Gao P; Lin Y; Gao B; Liu L; An J
    Acta Radiol; 2008 May; 49(4):442-9. PubMed ID: 18415789
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Assessing mechanical vibration-altered wall shear stress in digital arteries.
    Noe L C; Settembre N
    J Biomech; 2022 Jan; 131():110893. PubMed ID: 34953283
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Experimental and CFD flow studies in an intracranial aneurysm model with Newtonian and non-Newtonian fluids.
    Frolov SV; Sindeev SV; Liepsch D; Balasso A
    Technol Health Care; 2016 May; 24(3):317-33. PubMed ID: 26835725
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hemodynamics and wall mechanics in human carotid bifurcation and its consequences for atherogenesis: investigation of inter-individual variation.
    Younis HF; Kaazempur-Mofrad MR; Chan RC; Isasi AG; Hinton DP; Chau AH; Kim LA; Kamm RD
    Biomech Model Mechanobiol; 2004 Sep; 3(1):17-32. PubMed ID: 15300454
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Wall shear stress gradient is independently associated with middle cerebral artery aneurysm development: a case-control CFD patient-specific study based on 77 patients.
    Zimny M; Kawlewska E; Hebda A; Wolański W; Ładziński P; Kaspera W
    BMC Neurol; 2021 Jul; 21(1):281. PubMed ID: 34281533
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The importance of blood rheology in patient-specific computational fluid dynamics simulation of stenotic carotid arteries.
    Mendieta JB; Fontanarosa D; Wang J; Paritala PK; McGahan T; Lloyd T; Li Z
    Biomech Model Mechanobiol; 2020 Oct; 19(5):1477-1490. PubMed ID: 31894438
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evidence for non-Newtonian behavior of intracranial blood flow from Doppler ultrasonography measurements.
    Saqr KM; Mansour O; Tupin S; Hassan T; Ohta M
    Med Biol Eng Comput; 2019 May; 57(5):1029-1036. PubMed ID: 30523533
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A comparison of 4D flow MRI-derived wall shear stress with computational fluid dynamics methods for intracranial aneurysms and carotid bifurcations - A review.
    Szajer J; Ho-Shon K
    Magn Reson Imaging; 2018 May; 48():62-69. PubMed ID: 29223732
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High wall shear stress measured by magnetic resonance is a predictor of restenosis in the femoral-artery after balloon angioplasty.
    Amann-Vesti BR; Kozerke S; Krieger E; Boesiger P; Koppensteiner R
    Int Angiol; 2004 Sep; 23(3):270-5. PubMed ID: 15765043
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Wall shear stress calculation in ascending aorta using phase contrast magnetic resonance imaging. Investigating effective ways to calculate it in clinical practice.
    Efstathopoulos EP; Patatoukas G; Pantos I; Benekos O; Katritsis D; Kelekis NL
    Phys Med; 2008 Dec; 24(4):175-81. PubMed ID: 18289907
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optical coherence tomography-based patient-specific coronary artery reconstruction and fluid-structure interaction simulation.
    Wang J; Paritala PK; Mendieta JB; Komori Y; Raffel OC; Gu Y; Li Z
    Biomech Model Mechanobiol; 2020 Feb; 19(1):7-20. PubMed ID: 31292774
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Assessment of the accuracy of MRI wall shear stress estimation using numerical simulations.
    Petersson S; Dyverfeldt P; Ebbers T
    J Magn Reson Imaging; 2012 Jul; 36(1):128-38. PubMed ID: 22336966
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Wall shear stress calculations based on 3D cine phase contrast MRI and computational fluid dynamics: a comparison study in healthy carotid arteries.
    Cibis M; Potters WV; Gijsen FJ; Marquering H; vanBavel E; van der Steen AF; Nederveen AJ; Wentzel JJ
    NMR Biomed; 2014 Jul; 27(7):826-34. PubMed ID: 24817676
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Geometrically induced wall shear stress variability in CFD-MRI coupled simulations of blood flow in the thoracic aortas.
    Perinajová R; Juffermans JF; Westenberg JJM; van der Palen RLF; van den Boogaard PJ; Lamb HJ; Kenjereš S
    Comput Biol Med; 2021 Jun; 133():104385. PubMed ID: 33894502
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Subject-specific aortic wall shear stress estimations using semi-automatic segmentation.
    Renner J; Nadali Najafabadi H; Modin D; Länne T; Karlsson M
    Clin Physiol Funct Imaging; 2012 Nov; 32(6):481-91. PubMed ID: 23031070
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Circumferential vascular deformation after stent implantation alters wall shear stress evaluated with time-dependent 3D computational fluid dynamics models.
    LaDisa JF; Olson LE; Guler I; Hettrick DA; Kersten JR; Warltier DC; Pagel PS
    J Appl Physiol (1985); 2005 Mar; 98(3):947-57. PubMed ID: 15531564
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spatial distribution of wall shear stress in common carotid artery by color Doppler flow imaging.
    Wang C; Chen M; Liu SL; Liu Y; Jin JM; Zhang YH
    J Digit Imaging; 2013 Jun; 26(3):466-71. PubMed ID: 22832893
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reproducibility of wall shear stress assessment with the paraboloid method in the internal carotid artery with velocity encoded MRI in healthy young individuals.
    Box FM; van der Geest RJ; van der Grond J; van Osch MJ; Zwinderman AH; Palm-Meinders IH; Doornbos J; Blauw GJ; van Buchem MA; Reiber JH
    J Magn Reson Imaging; 2007 Sep; 26(3):598-605. PubMed ID: 17729354
    [TBL] [Abstract][Full Text] [Related]  

  • 40. MRI-based quantification of outflow boundary conditions for computational fluid dynamics of stenosed human carotid arteries.
    Groen HC; Simons L; van den Bouwhuijsen QJ; Bosboom EM; Gijsen FJ; van der Giessen AG; van de Vosse FN; Hofman A; van der Steen AF; Witteman JC; van der Lugt A; Wentzel JJ
    J Biomech; 2010 Aug; 43(12):2332-8. PubMed ID: 20627249
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.