These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 23398970)

  • 1. Application of a mechanobiological simulation technique to stents used clinically.
    Boyle CJ; Lennon AB; Prendergast PJ
    J Biomech; 2013 Mar; 46(5):918-24. PubMed ID: 23398970
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In silico prediction of the mechanobiological response of arterial tissue: application to angioplasty and stenting.
    Boyle CJ; Lennon AB; Prendergast PJ
    J Biomech Eng; 2011 Aug; 133(8):081001. PubMed ID: 21950894
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cardiovascular stent design and vessel stresses: a finite element analysis.
    Lally C; Dolan F; Prendergast PJ
    J Biomech; 2005 Aug; 38(8):1574-81. PubMed ID: 15958213
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A multi-scale mechanobiological model of in-stent restenosis: deciphering the role of matrix metalloproteinase and extracellular matrix changes.
    Zahedmanesh H; Van Oosterwyck H; Lally C
    Comput Methods Biomech Biomed Engin; 2014; 17(8):813-28. PubMed ID: 22967148
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiobjective design optimisation of coronary stents.
    Pant S; Limbert G; Curzen NP; Bressloff NW
    Biomaterials; 2011 Nov; 32(31):7755-73. PubMed ID: 21821283
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Finite element analysis and stent design: Reduction of dogboning.
    De Beule M; Van Impe R; Verhegghe B; Segers P; Verdonck P
    Technol Health Care; 2006; 14(4-5):233-41. PubMed ID: 17065746
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stresses in peripheral arteries following stent placement: a finite element analysis.
    Early M; Lally C; Prendergast PJ; Kelly DJ
    Comput Methods Biomech Biomed Engin; 2009 Feb; 12(1):25-33. PubMed ID: 18821189
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of plaque composition on underlying arterial wall stress during stent expansion: the case for lesion-specific stents.
    Pericevic I; Lally C; Toner D; Kelly DJ
    Med Eng Phys; 2009 May; 31(4):428-33. PubMed ID: 19129001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Drug-eluting stents.
    García-García HM; Vaina S; Tsuchida K; Serruys PW
    Arch Cardiol Mex; 2006; 76(3):297-319. PubMed ID: 17091802
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tissue prolapse and stresses in stented coronary arteries: A computer model for multi-layer atherosclerotic plaque.
    Hajiali Z; Dabagh M; Debusschere N; De Beule M; Jalali P
    Comput Biol Med; 2015 Nov; 66():39-46. PubMed ID: 26378501
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulation and experimental observation of contact conditions between stents and artery models.
    Takashima K; Kitou T; Mori K; Ikeuchi K
    Med Eng Phys; 2007 Apr; 29(3):326-35. PubMed ID: 16731021
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An argument for the use of multiple segment stents in curved arteries.
    Kasiri S; Kelly DJ
    J Biomech Eng; 2011 Aug; 133(8):084501. PubMed ID: 21950903
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative pathology: radiation-induced coronary artery disease in man and animals.
    Virmani R; Farb A; Carter AJ; Jones RM
    Semin Interv Cardiol; 1998; 3(3-4):163-72. PubMed ID: 10406688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stent expansion in curved vessel and their interactions: a finite element analysis.
    Wu W; Wang WQ; Yang DZ; Qi M
    J Biomech; 2007; 40(11):2580-5. PubMed ID: 17198706
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the effects of different strategies in modelling balloon-expandable stenting by means of finite element method.
    Gervaso F; Capelli C; Petrini L; Lattanzio S; Di Virgilio L; Migliavacca F
    J Biomech; 2008; 41(6):1206-12. PubMed ID: 18374340
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The consequences of the mechanical environment of peripheral arteries for nitinol stenting.
    Early M; Kelly DJ
    Med Biol Eng Comput; 2011 Nov; 49(11):1279-88. PubMed ID: 21833628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of tissue prolapse after balloon-expandable stenting: influence of stent cell geometry.
    Capelli C; Gervaso F; Petrini L; Dubini G; Migliavacca F
    Med Eng Phys; 2009 May; 31(4):441-7. PubMed ID: 19109049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulation of a balloon expandable stent in a realistic coronary artery-Determination of the optimum modelling strategy.
    Zahedmanesh H; John Kelly D; Lally C
    J Biomech; 2010 Aug; 43(11):2126-32. PubMed ID: 20452594
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of different stent designs on local hemodynamics in stented arteries.
    Balossino R; Gervaso F; Migliavacca F; Dubini G
    J Biomech; 2008; 41(5):1053-61. PubMed ID: 18215394
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of the vascular responses to balloon-expandable stenting in the coronary and peripheral circulations: long-term results in an animal model using the TriMaxx stent.
    Dubé H; Clifford AG; Barry CM; Schwarten DE; Schwartz LB
    J Vasc Surg; 2007 Apr; 45(4):821-7. PubMed ID: 17398392
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.