These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 23399105)

  • 1. Design of an efficient framework for fast prototyping of customized human-computer interfaces and virtual environments for rehabilitation.
    Avola D; Spezialetti M; Placidi G
    Comput Methods Programs Biomed; 2013 Jun; 110(3):490-502. PubMed ID: 23399105
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-time human pose detection and tracking for tele-rehabilitation in virtual reality.
    Obdržálek S; Kurillo G; Han J; Abresch T; Bajcsy R
    Stud Health Technol Inform; 2012; 173():320-4. PubMed ID: 22357010
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A non-contact mouse for surgeon-computer interaction.
    Grätzel C; Fong T; Grange S; Baur C
    Technol Health Care; 2004; 12(3):245-57. PubMed ID: 15328453
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gesture therapy: an upper limb virtual reality-based motor rehabilitation platform.
    Sucar LE; Orihuela-Espina F; Velazquez RL; Reinkensmeyer DJ; Leder R; Hernández-Franco J
    IEEE Trans Neural Syst Rehabil Eng; 2014 May; 22(3):634-43. PubMed ID: 24760913
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A virtual surgical prototype system based on gesture recognition for virtual surgical training in maxillofacial surgery.
    Zhao H; Cheng M; Huang J; Li M; Cheng H; Tian K; Yu H
    Int J Comput Assist Radiol Surg; 2023 May; 18(5):909-919. PubMed ID: 36418763
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a data management tool for investigating multivariate space and free will experiences in virtual reality.
    Morie JF; Iyer K; Luigi DP; Williams J; Dozois A; Rizzo AS
    Appl Psychophysiol Biofeedback; 2005 Sep; 30(3):319-31. PubMed ID: 16167194
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and application of real-time visual attention model for the exploration of 3D virtual environments.
    Hillaire S; Lécuyer A; Regia-Corte T; Cozot R; Royan J; Breton G
    IEEE Trans Vis Comput Graph; 2012 Mar; 18(3):356-68. PubMed ID: 21931178
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Variability Analysis on Gestures for People With Quadriplegia.
    Jiang H; Duerstock BS; Wachs JP
    IEEE Trans Cybern; 2018 Jan; 48(1):346-356. PubMed ID: 28113307
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computer-Vision-Assisted Palm Rehabilitation With Supervised Learning.
    Vamsikrishna KM; Dogra DP; Desarkar MS
    IEEE Trans Biomed Eng; 2016 May; 63(5):991-1001. PubMed ID: 26415148
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-time animation software for customized training to use motor prosthetic systems.
    Davoodi R; Loeb GE
    IEEE Trans Neural Syst Rehabil Eng; 2012 Mar; 20(2):134-42. PubMed ID: 22186964
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Depth camera-based 3D hand gesture controls with immersive tactile feedback for natural mid-air gesture interactions.
    Kim K; Kim J; Choi J; Kim J; Lee S
    Sensors (Basel); 2015 Jan; 15(1):1022-46. PubMed ID: 25580901
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface EMG based hand gesture identification using semi blind ICA: validation of ICA matrix analysis.
    Naik GR; Kumar DK; Palaniswami M
    Electromyogr Clin Neurophysiol; 2008; 48(3-4):169-80. PubMed ID: 18551837
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Usability and efficiency. The HELIOS approach to development of user interfaces.
    Borälv E; Göransson B; Olsson E; Sandblad B
    Comput Methods Programs Biomed; 1994 Dec; 45 Suppl():S47-64. PubMed ID: 7882675
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An sEMG-Controlled 3D Game for Rehabilitation Therapies: Real-Time Time Hand Gesture Recognition Using Deep Learning Techniques.
    Nasri N; Orts-Escolano S; Cazorla M
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33198083
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increasing patient engagement during virtual reality-based motor rehabilitation.
    Zimmerli L; Jacky M; Lünenburger L; Riener R; Bolliger M
    Arch Phys Med Rehabil; 2013 Sep; 94(9):1737-46. PubMed ID: 23500181
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Introduction to the special issue from the proceedings of the 2006 International Workshop on Virtual Reality in Rehabilitation.
    Keshner EA; Weiss PT
    J Neuroeng Rehabil; 2007 Jun; 4():18. PubMed ID: 17553159
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Real-time tracking of visually attended objects in virtual environments and its application to LOD.
    Lee S; Kim GJ; Choi S
    IEEE Trans Vis Comput Graph; 2009; 15(1):6-19. PubMed ID: 19008552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real-time 3D avatars for tele-rehabilitation in virtual reality.
    Kurillo G; Koritnik T; Bajd T; Bajcsy R
    Stud Health Technol Inform; 2011; 163():290-6. PubMed ID: 21335807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reaction time for processing visual stimulus in a computer-assisted rehabilitation environment.
    Sanchez Y; Pinzon D; Zheng B
    Disabil Rehabil Assist Technol; 2017 Oct; 12(7):725-729. PubMed ID: 27923277
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The use of virtual reality in memory rehabilitation: current findings and future directions.
    Brooks BM; Rose FD
    NeuroRehabilitation; 2003; 18(2):147-57. PubMed ID: 12867677
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.