BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 23399211)

  • 21. Synthesis, characterization and cell compatibility of novel poly(ester urethane)s based on poly(3-hydroxybutyrate-co-4-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) prepared by melting polymerization.
    Chen Z; Cheng S; Li Z; Xu K; Chen GQ
    J Biomater Sci Polym Ed; 2009; 20(10):1451-71. PubMed ID: 19622282
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Metabolic flux analysis of Gluconacetobacter xylinus for bacterial cellulose production.
    Zhong C; Zhang GC; Liu M; Zheng XT; Han PP; Jia SR
    Appl Microbiol Biotechnol; 2013 Jul; 97(14):6189-99. PubMed ID: 23640364
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Influence of different carbon sources on bacterial cellulose production by Gluconacetobacter xylinus strain ATCC 53524.
    Mikkelsen D; Flanagan BM; Dykes GA; Gidley MJ
    J Appl Microbiol; 2009 Aug; 107(2):576-83. PubMed ID: 19302295
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Preparation for and study on the property of medical bacterial cellulose].
    Li Z; Yan Z; Chen S; Wang H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2012 Feb; 29(1):164-9. PubMed ID: 22404031
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Contact angle, WAXS, and SAXS analysis of poly(beta-hydroxybutyrate) and poly(ethylene glycol) block copolymers obtained via Azotobacter vinelandii UWD.
    Townsend KJ; Busse K; Kressler J; Scholz C
    Biotechnol Prog; 2005; 21(3):959-64. PubMed ID: 15932280
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nanofibers from blends of polyvinyl alcohol and polyhydroxy butyrate as potential scaffold material for tissue engineering of skin.
    Asran ASh; Razghandi K; Aggarwal N; Michler GH; Groth T
    Biomacromolecules; 2010 Dec; 11(12):3413-21. PubMed ID: 21090703
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization of poly(3-hydroxybutyrate) produced by Cupriavidus necator in solid-state fermentation.
    Oliveira FC; Dias ML; Castilho LR; Freire DM
    Bioresour Technol; 2007 Feb; 98(3):633-8. PubMed ID: 16580194
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Influence of culture mode on bacterial cellulose production and its structure and property].
    Zhou LL; Sun DP; Wu QH; Yang JZ; Yang SL
    Wei Sheng Wu Xue Bao; 2007 Oct; 47(5):914-7. PubMed ID: 18062273
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High performance cellulose nanocomposites: comparing the reinforcing ability of bacterial cellulose and nanofibrillated cellulose.
    Lee KY; Tammelin T; Schulfter K; Kiiskinen H; Samela J; Bismarck A
    ACS Appl Mater Interfaces; 2012 Aug; 4(8):4078-86. PubMed ID: 22839594
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Uniaxial drawing of poly[(R)-3-hydroxybutyrate]/cellulose acetate butyrate blends and their orientation behavior.
    Park JW; Tanaka T; Doi Y; Iwata T
    Macromol Biosci; 2005 Sep; 5(9):840-52. PubMed ID: 16136569
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ultradrawing novel ultra-high molecular weight polyethylene fibers filled with bacterial cellulose nanofibers.
    Yeh JT; Tsai CC; Wang CK; Shao JW; Xiao MZ; Chen SC
    Carbohydr Polym; 2014 Jan; 101():1-10. PubMed ID: 24299742
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electromagnetically controlled biological assembly of aligned bacterial cellulose nanofibers.
    Sano MB; Rojas AD; Gatenholm P; Davalos RV
    Ann Biomed Eng; 2010 Aug; 38(8):2475-84. PubMed ID: 20300846
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Property evaluations of dry-cast reconstituted bacterial cellulose/tamarind xyloglucan biocomposites.
    de Souza CF; Lucyszyn N; Woehl MA; Riegel-Vidotti IC; Borsali R; Sierakowski MR
    Carbohydr Polym; 2013 Mar; 93(1):144-53. PubMed ID: 23465913
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluation of bacterial cellulose/hyaluronan nanocomposite biomaterials.
    Li Y; Qing S; Zhou J; Yang G
    Carbohydr Polym; 2014 Mar; 103():496-501. PubMed ID: 24528759
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spectral assignments and anisotropy data of cellulose I(alpha): 13C-NMR chemical shift data of cellulose I(alpha) determined by INADEQUATE and RAI techniques applied to uniformly 13C-labeled bacterial celluloses of different Gluconacetobacter xylinus strains.
    Hesse-Ertelt S; Witter R; Ulrich AS; Kondo T; Heinze T
    Magn Reson Chem; 2008 Nov; 46(11):1030-6. PubMed ID: 18781703
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bacterial cellulose/TiO2 hybrid nanofibers prepared by the surface hydrolysis method with molecular precision.
    Sun D; Yang J; Wang X
    Nanoscale; 2010 Feb; 2(2):287-92. PubMed ID: 20644807
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High-barrier coated bacterial cellulose nanowhiskers films with reduced moisture sensitivity.
    Martínez-Sanz M; Lopez-Rubio A; Lagaron JM
    Carbohydr Polym; 2013 Oct; 98(1):1072-82. PubMed ID: 23987449
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Solubilization mechanism and characterization of the structural change of bacterial cellulose in regenerated states through ionic liquid treatment.
    Okushita K; Chikayama E; Kikuchi J
    Biomacromolecules; 2012 May; 13(5):1323-30. PubMed ID: 22489745
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Crystallization kinetics of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/cellulose nanowhiskers composites.
    Ten E; Jiang L; Wolcott MP
    Carbohydr Polym; 2012 Sep; 90(1):541-50. PubMed ID: 24751075
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Regulated patterns of bacterial movements based on their secreted cellulose nanofibers interacting interfacially with ordered chitin templates.
    Kondo T; Kasai W; Nojiri M; Hishikawa Y; Togawa E; Romanovicz D; Brown RM
    J Biosci Bioeng; 2012 Jul; 114(1):113-20. PubMed ID: 22578597
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.