These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 23399218)

  • 1. Biocomposite from polylactic acid and lignocellulosic fibers: structure-property correlations.
    Faludi G; Dora G; Renner K; Móczó J; Pukánszky B
    Carbohydr Polym; 2013 Feb; 92(2):1767-75. PubMed ID: 23399218
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Easy alignment and effective nucleation activity of ramie fibers in injection-molded poly(lactic acid) biocomposites.
    Xu H; Liu CY; Chen C; Hsiao BS; Zhong GJ; Li ZM
    Biopolymers; 2012 Oct; 97(10):825-39. PubMed ID: 22806502
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of lignin on the mechanical performance of polylactic acid and jute composites.
    Delgado-Aguilar M; Oliver-Ortega H; Alberto Méndez J; Camps J; Espinach FX; Mutjé P
    Int J Biol Macromol; 2018 Sep; 116():299-304. PubMed ID: 29698765
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biocompatibility and characterization of polylactic acid/styrene-ethylene-butylene-styrene composites.
    Tsou CH; Kao BJ; Yang MC; Suen MC; Lee YH; Chen JC; Yao WH; Lin SM; Tsou CY; Huang SH; De Guzman M; Hung WS
    Biomed Mater Eng; 2015; 26 Suppl 1():S147-54. PubMed ID: 26405910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of Rice Straw Powder (RSP) Size and Pretreatment on Properties of FDM 3D-Printed RSP/Poly(Lactic Acid) Biocomposites.
    Yu W; Dong L; Lei W; Zhou Y; Pu Y; Zhang X
    Molecules; 2021 May; 26(11):. PubMed ID: 34072204
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and properties of poly (lactic acid)/Sterculia urens uniaxial fabric biocomposites.
    Jayaramudu J; Reddy GS; Varaprasad K; Sadiku ER; Ray SS; Rajulu AV
    Carbohydr Polym; 2013 May; 94(2):822-8. PubMed ID: 23544638
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design, characterization and preliminary biological evaluation of new lignin-PLA biocomposites.
    Spiridon I; Tanase CE
    Int J Biol Macromol; 2018 Jul; 114():855-863. PubMed ID: 29581002
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Property tuning of poly(lactic acid)/cellulose bio-composites through blending with modified ethylene-vinyl acetate copolymer.
    Pracella M; Haque MM; Paci M; Alvarez V
    Carbohydr Polym; 2016 Feb; 137():515-524. PubMed ID: 26686158
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rheological and thermal characteristics of three-phase eco-composites.
    Kim DH; Kang HJ; Song YS
    Carbohydr Polym; 2013 Feb; 92(2):1006-11. PubMed ID: 23399121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New biocomposites based on bioplastic flax fibers and biodegradable polymers.
    Wróbel-Kwiatkowska M; Czemplik M; Kulma A; Zuk M; Kaczmar J; Dymińska L; Hanuza J; Ptak M; Szopa J
    Biotechnol Prog; 2012; 28(5):1336-46. PubMed ID: 22807200
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Properties of polylactic acid composites reinforced with oil palm biomass microcrystalline cellulose.
    Haafiz MK; Hassan A; Zakaria Z; Inuwa IM; Islam MS; Jawaid M
    Carbohydr Polym; 2013 Oct; 98(1):139-45. PubMed ID: 23987327
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation and biological properties of PLLA/beta-TCP composites reinforced by chitosan fibers.
    Wang J; Qu L; Meng X; Gao J; Li H; Wen G
    Biomed Mater; 2008 Jun; 3(2):025004. PubMed ID: 18458373
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of coupling agents on mechanical property retention and long-term cytocompatibility of phosphate glass fibre reinforced PLA composites.
    Hasan MS; Ahmed I; Parsons AJ; Walker GS; Scotchford CA
    J Mech Behav Biomed Mater; 2013 Dec; 28():1-14. PubMed ID: 23959231
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Melt spinning of poly(lactic acid) and hydroxyapatite composite fibers: influence of the filler content on the fiber properties.
    Persson M; Lorite GS; Cho SW; Tuukkanen J; Skrifvars M
    ACS Appl Mater Interfaces; 2013 Aug; 5(15):6864-72. PubMed ID: 23848437
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Micromechanics of TEMPO-oxidized fibrillated cellulose composites.
    Bulota M; Tanpichai S; Hughes M; Eichhorn SJ
    ACS Appl Mater Interfaces; 2012 Jan; 4(1):331-7. PubMed ID: 22181067
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Composites of poly(lactide-co-glycolide) and the surface modified carbonated hydroxyapatite nanoparticles.
    Hong Z; Zhang P; Liu A; Chen L; Chen X; Jing X
    J Biomed Mater Res A; 2007 Jun; 81(3):515-22. PubMed ID: 17133447
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical properties of poly(lactic acid)/starch composites compatibilized by maleic anhydride.
    Zhang JF; Sun X
    Biomacromolecules; 2004; 5(4):1446-51. PubMed ID: 15244463
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation and characterization of dry method esterified starch/polylactic acid composite materials.
    Zuo Y; Gu J; Yang L; Qiao Z; Tan H; Zhang Y
    Int J Biol Macromol; 2014 Mar; 64():174-80. PubMed ID: 24315947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biodegradable composites from sugar beet pulp and poly(lactic acid).
    Liu L; Fishman ML; Hicks KB; Liu CK
    J Agric Food Chem; 2005 Nov; 53(23):9017-22. PubMed ID: 16277397
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adhesion and micromechanical deformation processes in PLA/CaSO₄ composites.
    Imre B; Keledi G; Renner K; Móczó J; Murariu M; Dubois P; Pukánszky B
    Carbohydr Polym; 2012 Jul; 89(3):759-67. PubMed ID: 24750859
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.