These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Structure-controlled lignin complex for PLA composites with outstanding antibacterial, fluorescent and photothermal conversion properties. Wang Y; Hou J; Huang Y; Fu Y Int J Biol Macromol; 2022 Jan; 194():1002-1009. PubMed ID: 34852261 [TBL] [Abstract][Full Text] [Related]
23. Polylactic acid biocomposites with high loadings of melt-flowable organosolv lignin. Alshammari S; Ameli A Int J Biol Macromol; 2023 Jul; 242(Pt 3):125094. PubMed ID: 37245743 [TBL] [Abstract][Full Text] [Related]
24. Influence of lignin content on the intrinsic modulus of natural fibers and on the stiffness of composite materials. Serra-Parareda F; Tarrés Q; Espinach FX; Vilaseca F; Mutjé P; Delgado-Aguilar M Int J Biol Macromol; 2020 Jul; 155():81-90. PubMed ID: 32198042 [TBL] [Abstract][Full Text] [Related]
25. A novel basalt fiber-reinforced polylactic acid composite for hard tissue repair. Chen X; Li Y; Gu N Biomed Mater; 2010 Aug; 5(4):044104. PubMed ID: 20683132 [TBL] [Abstract][Full Text] [Related]
26. Physical, chemical and mechanical properties of pehuen cellulosic husk and its pehuen-starch based composites. Castaño J; Rodríguez-Llamazares S; Carrasco C; Bouza R Carbohydr Polym; 2012 Nov; 90(4):1550-6. PubMed ID: 22944415 [TBL] [Abstract][Full Text] [Related]
27. Characterization of a new natural fiber from Arundo donax L. as potential reinforcement of polymer composites. Fiore V; Scalici T; Valenza A Carbohydr Polym; 2014 Jun; 106():77-83. PubMed ID: 24721053 [TBL] [Abstract][Full Text] [Related]
28. Comparison of Properties of Poly(Lactic Acid) Composites Prepared from Different Components of Corn Straw Fiber. Qi Z; Wang B; Sun C; Yang M; Chen X; Zheng D; Yao W; Chen Y; Cheng R; Zhang Y Int J Mol Sci; 2022 Jun; 23(12):. PubMed ID: 35743188 [TBL] [Abstract][Full Text] [Related]
29. Study on the compatible interface of bamboo fiber/polylactic acid composites by in-situ solid phase grafting. Li W; He X; Zuo Y; Wang S; Wu Y Int J Biol Macromol; 2019 Dec; 141():325-332. PubMed ID: 31491516 [TBL] [Abstract][Full Text] [Related]
30. Effect of diameter of poly(lactic acid) fiber on the physical properties of poly(ɛ-caprolactone). Ju D; Han L; Guo Z; Bian J; Li F; Chen S; Dong L Int J Biol Macromol; 2015 May; 76():49-57. PubMed ID: 25709010 [TBL] [Abstract][Full Text] [Related]
31. Fibrous scaffolds made by co-electrospinning soluble eggshell membrane protein with biodegradable synthetic polymers. Xiong X; Li Q; Lu JW; Guo ZX; Sun ZH; Yu J J Biomater Sci Polym Ed; 2012; 23(9):1217-30. PubMed ID: 21639995 [TBL] [Abstract][Full Text] [Related]
32. Influence of the addition of β-TCP on the morphology, thermal properties and cell viability of poly (lactic acid) fibers obtained by electrospinning. Siqueira L; Passador FR; Costa MM; Lobo AO; Sousa E Mater Sci Eng C Mater Biol Appl; 2015; 52():135-43. PubMed ID: 25953550 [TBL] [Abstract][Full Text] [Related]
33. Inducing PLA/starch compatibility through butyl-etherification of waxy and high amylose starch. Wokadala OC; Emmambux NM; Ray SS Carbohydr Polym; 2014 Nov; 112():216-24. PubMed ID: 25129738 [TBL] [Abstract][Full Text] [Related]
34. Nano-composite of poly(L-lactide) and surface grafted hydroxyapatite: mechanical properties and biocompatibility. Hong Z; Zhang P; He C; Qiu X; Liu A; Chen L; Chen X; Jing X Biomaterials; 2005 Nov; 26(32):6296-304. PubMed ID: 15913758 [TBL] [Abstract][Full Text] [Related]
35. Effects of Modifier Type on Properties of in Situ Organo-Montmorillonite Modified Wood Flour/Poly(lactic acid) Composites. Liu R; Chen Y; Cao J ACS Appl Mater Interfaces; 2016 Jan; 8(1):161-8. PubMed ID: 26671464 [TBL] [Abstract][Full Text] [Related]
36. Morphology and properties of hybrid composites based on polypropylene/polylactic acid blend and bamboo fiber. Ying-Chen Z; Hong-Yan W; Yi-Ping Q Bioresour Technol; 2010 Oct; 101(20):7944-50. PubMed ID: 20605445 [TBL] [Abstract][Full Text] [Related]
37. Τhe effect of silica nanoparticles on the thermomechanical properties and degradation behavior of polylactic acid. Georgiopoulos P; Kontou E; Meristoudi A; Pispas S; Chatzinikolaidou M J Biomater Appl; 2014 Nov; 29(5):662-74. PubMed ID: 25091863 [TBL] [Abstract][Full Text] [Related]
38. Effects of dry method esterification of starch on the degradation characteristics of starch/polylactic acid composites. Zuo YF; Gu J; Qiao Z; Tan H; Cao J; Zhang Y Int J Biol Macromol; 2015 Jan; 72():391-402. PubMed ID: 25192854 [TBL] [Abstract][Full Text] [Related]
39. Fabrication and characterization of poly(lactic acid)/acetyl tributyl citrate/carbon black as conductive polymer composites. Yu J; Wang N; Ma X Biomacromolecules; 2008 Mar; 9(3):1050-7. PubMed ID: 18290627 [TBL] [Abstract][Full Text] [Related]
40. Biomass-based composites from poly(lactic acid) and wood flour by vapor-phase assisted surface polymerization. Kim D; Andou Y; Shirai Y; Nishida H ACS Appl Mater Interfaces; 2011 Feb; 3(2):385-91. PubMed ID: 21186811 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]