BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 23399242)

  • 1. Characterization of Cellulose regenerated from solutions of pine and eucalyptus woods in 1-allyl-3-methilimidazolium chloride.
    Casas A; Alonso MV; Oliet M; Santos TM; Rodriguez F
    Carbohydr Polym; 2013 Feb; 92(2):1946-52. PubMed ID: 23399242
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical composition changes in eucalyptus and pinus woods submitted to heat treatment.
    Brito JO; Silva FG; Leão MM; Almeida G
    Bioresour Technol; 2008 Dec; 99(18):8545-8. PubMed ID: 18586488
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural change in wood by brown rot fungi and effect on enzymatic hydrolysis.
    Monrroy M; Ortega I; Ramírez M; Baeza J; Freer J
    Enzyme Microb Technol; 2011 Oct; 49(5):472-7. PubMed ID: 22112620
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Eucalyptus globulus wood fractionation by autohydrolysis and organosolv delignification.
    Romaní A; Garrote G; López F; Parajó JC
    Bioresour Technol; 2011 May; 102(10):5896-904. PubMed ID: 21392966
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Facile preparation of all-cellulose composites from softwood, hardwood, and agricultural straw cellulose by a simple route of partial dissolution.
    Tang X; Liu G; Zhang H; Gao X; Li M; Zhang S
    Carbohydr Polym; 2021 Mar; 256():117591. PubMed ID: 33483077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cellulose extraction from wood chip in an ionic liquid 1-allyl-3-methylimidazolium chloride (AmimCl).
    Wang X; Li H; Cao Y; Tang Q
    Bioresour Technol; 2011 Sep; 102(17):7959-65. PubMed ID: 21684735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Partial dissolution of ACQ-treated wood in lithium chloride/N-methyl-2-pyrrolidinone: separation of copper from potential lignocellulosic feedstocks.
    Eberhardt TL; Lebow S; Reed KG
    Chemosphere; 2012 Feb; 86(8):797-801. PubMed ID: 22154004
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microwave-assisted dissolution and delignification of wood in 1-ethyl-3-methylimidazolium acetate.
    Wang H; Maxim ML; Gurau G; Rogers RD
    Bioresour Technol; 2013 May; 136():739-42. PubMed ID: 23566466
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extrusion pretreatment of pine wood chips.
    Karunanithy C; Muthukumarappan K; Gibbons WR
    Appl Biochem Biotechnol; 2012 May; 167(1):81-99. PubMed ID: 22528654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dissolution of cellulose from AFEX-pretreated Zoysia japonica in AMIMCl with ultrasonic vibration.
    Liu L; Ju M; Li W; Hou Q
    Carbohydr Polym; 2013 Oct; 98(1):412-20. PubMed ID: 23987362
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Condensed lignin structures and re-localization achieved at high severities in autohydrolysis of Eucalyptus globulus wood and their relationship with cellulose accessibility.
    Araya F; Troncoso E; Mendonça RT; Freer J
    Biotechnol Bioeng; 2015 Sep; 112(9):1783-91. PubMed ID: 25851426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dissolution of wood in ionic liquids.
    Kilpeläinen I; Xie H; King A; Granstrom M; Heikkinen S; Argyropoulos DS
    J Agric Food Chem; 2007 Oct; 55(22):9142-8. PubMed ID: 17907779
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal decomposition of wood: influence of wood components and cellulose crystallite size.
    Poletto M; Zattera AJ; Forte MM; Santana RM
    Bioresour Technol; 2012 Apr; 109():148-53. PubMed ID: 22306076
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Separation characteristics of lignin from Eucalyptus camaldulensis lignin celluloses for biomedical cellulose.
    Peng W; Wang L; Zhang M; Lin Z
    Pak J Pharm Sci; 2014 May; 27(3 Suppl):723-8. PubMed ID: 24816703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of different biomass materials as feedstock for fermentable sugar production.
    Zheng Y; Pan Z; Zhang R; Labavitch JM; Wang D; Teter SA; Jenkins BM
    Appl Biochem Biotechnol; 2007 Apr; 137-140(1-12):423-35. PubMed ID: 18478406
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of autohydrolysis of Eucalyptus urograndis and Eucalyptus grandis on influence of chemical components and crystallinity index.
    da Silva Morais AP; Sansígolo CA; de Oliveira Neto M
    Bioresour Technol; 2016 Aug; 214():623-628. PubMed ID: 27187566
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transition of cellulose crystalline structure and surface morphology of biomass as a function of ionic liquid pretreatment and its relation to enzymatic hydrolysis.
    Cheng G; Varanasi P; Li C; Liu H; Melnichenko YB; Simmons BA; Kent MS; Singh S
    Biomacromolecules; 2011 Apr; 12(4):933-41. PubMed ID: 21361369
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pretreatment of eucalyptus with recycled ionic liquids for low-cost biorefinery.
    Xu J; Liu B; Hou H; Hu J
    Bioresour Technol; 2017 Jun; 234():406-414. PubMed ID: 28347960
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aerobic moving bed bioreactor performance: a comparative study of removal efficiencies of kraft mill effluents from Pinus radiata and Eucalyptus globulus as raw material.
    Villamar CA; Jarpa M; Decap J; Vidal G
    Water Sci Technol; 2009; 59(3):507-14. PubMed ID: 19214005
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combined effects of raw materials and solvent systems on the preparation and properties of regenerated cellulose fibers.
    Chen J; Guan Y; Wang K; Zhang X; Xu F; Sun R
    Carbohydr Polym; 2015 Sep; 128():147-53. PubMed ID: 26005150
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.