These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 23399285)

  • 1. Ionic modified crosslinked salep: a highly loaded and efficient heterogeneous organocatalyst.
    Pourjavadi A; Hosseini SH; Fakoorpoor SM
    Carbohydr Polym; 2013 Feb; 92(2):2252-6. PubMed ID: 23399285
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnetic nanoparticle-supported glutathione: a conceptually sustainable organocatalyst.
    Polshettiwar V; Baruwati B; Varma RS
    Chem Commun (Camb); 2009 Apr; (14):1837-9. PubMed ID: 19319418
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immobilization of ruthenium in organic-inorganic hybrid copolymers: a reusable heterogeneous catalyst for oxidation of alcohols with molecular oxygen.
    Matsumoto T; Ueno M; Wang N; Kobayashi S
    Chem Asian J; 2008 Feb; 3(2):239-43. PubMed ID: 18188860
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sodium alginate: An efficient biopolymeric catalyst for green synthesis of 2-amino-4H-pyran derivatives.
    Dekamin MG; Peyman SZ; Karimi Z; Javanshir S; Naimi-Jamal MR; Barikani M
    Int J Biol Macromol; 2016 Jun; 87():172-9. PubMed ID: 26845480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polymer-micelle incarcerated scandium as a polymer-supported catalyst for high-throughput organic synthesis.
    Takeuchi M; Akiyama R; Kobayashi S
    J Am Chem Soc; 2005 Sep; 127(38):13096-7. PubMed ID: 16173708
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of nitrogen-rich porous organic polymer for the solid-phase synthesis of 2-amino-4H-benzo[b]pyran scaffolds using ball milling process.
    Zaharani L; Khaligh NG; Mihankhah T; Johan MR
    Mol Divers; 2021 Feb; 25(1):323-332. PubMed ID: 32361887
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A facile, efficient, and sustainable chitosan/CaHAp catalyst and one-pot synthesis of novel 2,6-diamino-pyran-3,5-dicarbonitriles.
    Maddila S; Gangu KK; Maddila SN; Jonnalagadda SB
    Mol Divers; 2017 Feb; 21(1):247-255. PubMed ID: 27853977
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Piperazine: An excellent catalyst for the synthesis of 2-amino-3-cyano-4H-pyrans derivatives in aqueous medium.
    Yousefi MR; Goli-Jolodar O; Shirini F
    Bioorg Chem; 2018 Dec; 81():326-333. PubMed ID: 30179795
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 4-(N,N-dimethylamino)pyridine-embedded nanoporous conjugated polymer as a highly active heterogeneous organocatalyst.
    Zhang Y; Zhang Y; Sun YL; Du X; Shi JY; Wang WD; Wang W
    Chemistry; 2012 May; 18(20):6328-34. PubMed ID: 22467297
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Introduction of Succinimide as A Green and Sustainable Organo-Catalyst for the Synthesis of Arylidene Malononitrile and Tetrahydrobenzo[b] pyran Derivatives.
    Hassanzadeh F; Shirini F; Mamaghani M; Daneshvar N
    Comb Chem High Throughput Screen; 2021; 24(1):155-163. PubMed ID: 32646356
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metal-organic cooperative catalysis in C-H and C-C bond activation and its concurrent recovery.
    Park YJ; Park JW; Jun CH
    Acc Chem Res; 2008 Feb; 41(2):222-34. PubMed ID: 18247521
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polymer supports in organic catalysis and synthesis.
    Bergbreiter DE
    Curr Opin Drug Discov Devel; 2001 Nov; 4(6):736-44. PubMed ID: 11899613
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A robust ionic liquid as reaction medium and efficient organocatalyst for carbon dioxide fixation.
    Wong WL; Chan PH; Zhou ZY; Lee KH; Cheung KC; Wong KY
    ChemSusChem; 2008; 1(1-2):67-70. PubMed ID: 18605664
    [No Abstract]   [Full Text] [Related]  

  • 14. Biomimetic design and assembly of organic-inorganic composite films with simultaneously enhanced strength and toughness.
    Han J; Dou Y; Yan D; Ma J; Wei M; Evans DG; Duan X
    Chem Commun (Camb); 2011 May; 47(18):5274-6. PubMed ID: 21461430
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simple and Effective Catalyst Separation by New CO
    Großeheilmann J; Kragl U
    ChemSusChem; 2017 Jun; 10(12):2685-2691. PubMed ID: 28387441
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage.
    McKeown NB; Budd PM
    Chem Soc Rev; 2006 Aug; 35(8):675-83. PubMed ID: 16862268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Switchable-Hydrophilicity Solvents for Product Isolation and Catalyst Recycling in Organocatalysis.
    Großeheilmann J; Vanderveen JR; Jessop PG; Kragl U
    ChemSusChem; 2016 Apr; 9(7):696-702. PubMed ID: 26893152
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A trifunctional catalyst for one-pot synthesis of chiral diols via Heck coupling-N-oxidation-asymmetric dihydroxylation: application for the synthesis of diltiazem and taxol side chain.
    Choudary BM; Chowdari NS; Madhi S; Kantam ML
    J Org Chem; 2003 Mar; 68(5):1736-46. PubMed ID: 12608786
    [TBL] [Abstract][Full Text] [Related]  

  • 19. When chiral product and catalyst are the same: discovery of asymmetric organoautocatalysis.
    Tsogoeva SB
    Chem Commun (Camb); 2010 Nov; 46(41):7662-9. PubMed ID: 20830352
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Supported Catalysts for Continuous Flow Synthesis.
    Colella M; Carlucci C; Luisi R
    Top Curr Chem (Cham); 2018 Nov; 376(6):46. PubMed ID: 30470973
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.