These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 23399494)
1. γ-Alumina as a process advancing tool for a new generation biofuel. Syngiridis K; Bekatorou A; Kallis M; Kandylis P; Kanellaki M; Koutinas AA Bioresour Technol; 2013 Mar; 132():45-8. PubMed ID: 23399494 [TBL] [Abstract][Full Text] [Related]
2. Favouring butyrate production for a new generation biofuel by acidogenic glucose fermentation using cells immobilised on γ-alumina. Syngiridis K; Bekatorou A; Kandylis P; Larroche C; Kanellaki M; Koutinas AA Bioresour Technol; 2014 Jun; 161():118-23. PubMed ID: 24690582 [TBL] [Abstract][Full Text] [Related]
3. Preparation of volatile fatty acid (VFA) calcium salts by anaerobic digestion of glucose. Li X; Swan JE; Nair GR; Langdon AG Biotechnol Appl Biochem; 2015; 62(4):476-82. PubMed ID: 25274086 [TBL] [Abstract][Full Text] [Related]
4. Volatile fatty acids productivity by anaerobic co-digesting waste activated sludge and corn straw: effect of feedstock proportion. Zhou A; Guo Z; Yang C; Kong F; Liu W; Wang A J Biotechnol; 2013 Oct; 168(2):234-9. PubMed ID: 23751505 [TBL] [Abstract][Full Text] [Related]
5. Optimal production of polyhydroxyalkanoates (PHA) in activated sludge fed by volatile fatty acids (VFAs) generated from alkaline excess sludge fermentation. Mengmeng C; Hong C; Qingliang Z; Shirley SN; Jie R Bioresour Technol; 2009 Feb; 100(3):1399-405. PubMed ID: 18945612 [TBL] [Abstract][Full Text] [Related]
6. Production of polyhydroxyalkanoates (PHAs) by Vu DH; Wainaina S; Taherzadeh MJ; Åkesson D; Ferreira JA Bioengineered; 2021 Dec; 12(1):2480-2498. PubMed ID: 34115556 [TBL] [Abstract][Full Text] [Related]
7. Continuous volatile fatty acid production from lignocellulosic biomass by a novel rumen-mimetic bioprocess. Agematu H; Takahashi T; Hamano Y J Biosci Bioeng; 2017 Nov; 124(5):528-533. PubMed ID: 28690158 [TBL] [Abstract][Full Text] [Related]
8. Fermentation of 1,2-O-iso-propylidene-D-glucofuranose ("monoacetone glucose") by anaerobic bacteria. Cmelik SH Zentralbl Bakteriol A; 1980; 247(4):495-501. PubMed ID: 7456850 [TBL] [Abstract][Full Text] [Related]
9. Impact of Organic Loading Rate in Volatile Fatty Acids Production and Population Dynamics Using Microalgae Biomass as Substrate. Magdalena JA; Greses S; González-Fernández C Sci Rep; 2019 Dec; 9(1):18374. PubMed ID: 31804573 [TBL] [Abstract][Full Text] [Related]
10. Effect of pH and retention time on volatile fatty acids production during mixed culture fermentation. Jankowska E; Chwiałkowska J; Stodolny M; Oleskowicz-Popiel P Bioresour Technol; 2015 Aug; 190():274-80. PubMed ID: 25965252 [TBL] [Abstract][Full Text] [Related]
11. Application of rumen and anaerobic sludge microbes for bio harvesting from lignocellulosic biomass. Nguyen LN; Nguyen AQ; Johir MAH; Guo W; Ngo HH; Chaves AV; Nghiem LD Chemosphere; 2019 Aug; 228():702-708. PubMed ID: 31063917 [TBL] [Abstract][Full Text] [Related]
12. Upflow anaerobic sludge blanket reactor--a review. Bal AS; Dhagat NN Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675 [TBL] [Abstract][Full Text] [Related]
13. Fermentation of wet-exploded corn stover for the production of volatile fatty acids. Murali N; Fernandez S; Ahring BK Bioresour Technol; 2017 Mar; 227():197-204. PubMed ID: 28038397 [TBL] [Abstract][Full Text] [Related]
14. Modeling acidogenic and sulfate-reducing processes for the determination of fermentable fractions in wastewater. Ruel SM; Comeau Y; Ginestet P; Héduit A Biotechnol Bioeng; 2002 Dec; 80(5):525-36. PubMed ID: 12355463 [TBL] [Abstract][Full Text] [Related]
15. Online monitoring of concentration and dynamics of volatile fatty acids in anaerobic digestion processes with mid-infrared spectroscopy. Falk HM; Reichling P; Andersen C; Benz R Bioprocess Biosyst Eng; 2015 Feb; 38(2):237-49. PubMed ID: 25142153 [TBL] [Abstract][Full Text] [Related]
16. Impact of undissociated volatile fatty acids on acidogenesis in a two-phase anaerobic system. Xiao K; Zhou Y; Guo C; Maspolim Y; Ng WJ J Environ Sci (China); 2016 Apr; 42():196-201. PubMed ID: 27090711 [TBL] [Abstract][Full Text] [Related]
17. Production of volatile fatty acids by fermentation of waste activated sludge pre-treated in full-scale thermal hydrolysis plants. Morgan-Sagastume F; Pratt S; Karlsson A; Cirne D; Lant P; Werker A Bioresour Technol; 2011 Feb; 102(3):3089-97. PubMed ID: 21075621 [TBL] [Abstract][Full Text] [Related]
18. Effect of acid speciation on solid waste liquefaction in an anaerobic acid digester. Babel S; Fukushi K; Sitanrassamee B Water Res; 2004 May; 38(9):2416-22. PubMed ID: 15142803 [TBL] [Abstract][Full Text] [Related]
19. Polyhydroxyalkanoate production from fermented volatile fatty acids: effect of pH and feeding regimes. Chen H; Meng H; Nie Z; Zhang M Bioresour Technol; 2013 Jan; 128():533-8. PubMed ID: 23201909 [TBL] [Abstract][Full Text] [Related]
20. Alcohol production through volatile fatty acids reduction with hydrogen as electron donor by mixed cultures. Steinbusch KJ; Hamelers HV; Buisman CJ Water Res; 2008 Sep; 42(15):4059-66. PubMed ID: 18725163 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]