These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 23399497)
1. Electrospun carbon nanofibers from polyacrylonitrile blended with activated or graphitized carbonaceous materials for improving anodic bioelectrocatalysis. Patil SA; Chigome S; Hägerhäll C; Torto N; Gorton L Bioresour Technol; 2013 Mar; 132():121-6. PubMed ID: 23399497 [TBL] [Abstract][Full Text] [Related]
2. Facile fabrication of scalable, hierarchically structured polymer/carbon architectures for bioelectrodes. Luckarift HR; Sizemore SR; Farrington KE; Roy J; Lau C; Atanassov PB; Johnson GR ACS Appl Mater Interfaces; 2012 Apr; 4(4):2082-7. PubMed ID: 22394146 [TBL] [Abstract][Full Text] [Related]
3. Performance of electrodes synthesized with polyacrylonitrile-based carbon nanofibers for application in electrochemical sensors and biosensors. Adabi M; Saber R; Faridi-Majidi R; Faridbod F Mater Sci Eng C Mater Biol Appl; 2015 Mar; 48():673-8. PubMed ID: 25579970 [TBL] [Abstract][Full Text] [Related]
4. Activated carbon monoliths derived from bacterial cellulose/polyacrylonitrile composite as new generation electrode materials in EDLC. Dobashi A; Maruyama J; Shen Y; Nandi M; Uyama H Carbohydr Polym; 2018 Nov; 200():381-390. PubMed ID: 30177178 [TBL] [Abstract][Full Text] [Related]
5. Mesoporous carbon nanofibers with a high surface area electrospun from thermoplastic polyvinylpyrrolidone. Wang P; Zhang D; Ma F; Ou Y; Chen QN; Xie S; Li J Nanoscale; 2012 Nov; 4(22):7199-204. PubMed ID: 23070027 [TBL] [Abstract][Full Text] [Related]
6. Effects of atmospheric air plasma treatment of graphite and carbon felt electrodes on the anodic current from Shewanella attached cells. Epifanio M; Inguva S; Kitching M; Mosnier JP; Marsili E Bioelectrochemistry; 2015 Dec; 106(Pt A):186-93. PubMed ID: 25862431 [TBL] [Abstract][Full Text] [Related]
7. Preparation of aminated-polyacrylonitrile nanofiber membranes for the adsorption of metal ions: comparison with microfibers. Neghlani PK; Rafizadeh M; Taromi FA J Hazard Mater; 2011 Feb; 186(1):182-9. PubMed ID: 21131126 [TBL] [Abstract][Full Text] [Related]
8. Standardized microbial fuel cell anodes of silica-immobilized Shewanella oneidensis. Luckarift HR; Sizemore SR; Roy J; Lau C; Gupta G; Atanassov P; Johnson GR Chem Commun (Camb); 2010 Sep; 46(33):6048-50. PubMed ID: 20574569 [TBL] [Abstract][Full Text] [Related]
9. Electron transfer mechanism in Shewanella loihica PV-4 biofilms formed at graphite electrode. Jain A; Zhang X; Pastorella G; Connolly JO; Barry N; Woolley R; Krishnamurthy S; Marsili E Bioelectrochemistry; 2012 Oct; 87():28-32. PubMed ID: 22281091 [TBL] [Abstract][Full Text] [Related]
10. Enhanced performance of electrospun carbon fibers modified with carbon nanotubes: promising electrodes for enzymatic biofuel cells. Engel AB; Cherifi A; Tingry S; Cornu D; Peigney A; Laurent Ch Nanotechnology; 2013 Jun; 24(24):245402. PubMed ID: 23702912 [TBL] [Abstract][Full Text] [Related]
11. Antibacterial activity of polyacrylonitrile-chitosan electrospun nanofibers. Kim SS; Lee J Carbohydr Polym; 2014 Feb; 102():231-7. PubMed ID: 24507277 [TBL] [Abstract][Full Text] [Related]
12. Adsorption of toluene on carbon nanofibers prepared by electrospinning. Oh GY; Ju YW; Kim MY; Jung HR; Kim HJ; Lee WJ Sci Total Environ; 2008 Apr; 393(2-3):341-7. PubMed ID: 18262599 [TBL] [Abstract][Full Text] [Related]
13. Nanoparticle decorated anodes for enhanced current generation in microbial electrochemical cells. Fan Y; Xu S; Schaller R; Jiao J; Chaplen F; Liu H Biosens Bioelectron; 2011 Jan; 26(5):1908-12. PubMed ID: 20542420 [TBL] [Abstract][Full Text] [Related]
14. Carbon nanotube-loaded electrospun LiFePO4/carbon composite nanofibers as stable and binder-free cathodes for rechargeable lithium-ion batteries. Toprakci O; Toprakci HA; Ji L; Xu G; Lin Z; Zhang X ACS Appl Mater Interfaces; 2012 Mar; 4(3):1273-80. PubMed ID: 22301674 [TBL] [Abstract][Full Text] [Related]
15. Use of SWATH mass spectrometry for quantitative proteomic investigation of Shewanella oneidensis MR-1 biofilms grown on graphite cloth electrodes. Grobbler C; Virdis B; Nouwens A; Harnisch F; Rabaey K; Bond PL Syst Appl Microbiol; 2015 Mar; 38(2):135-9. PubMed ID: 25523930 [TBL] [Abstract][Full Text] [Related]
16. Porous Carbon Nanofibers from Electrospun Biomass Tar/Polyacrylonitrile/Silver Hybrids as Antimicrobial Materials. Song K; Wu Q; Zhang Z; Ren S; Lei T; Negulescu II; Zhang Q ACS Appl Mater Interfaces; 2015 Jul; 7(27):15108-16. PubMed ID: 26110209 [TBL] [Abstract][Full Text] [Related]
17. The study of controlling pore size on electrospun carbon nanofibers for hydrogen adsorption. Im JS; Park SJ; Kim TJ; Kim YH; Lee YS J Colloid Interface Sci; 2008 Feb; 318(1):42-9. PubMed ID: 17988675 [TBL] [Abstract][Full Text] [Related]
18. Nanostructured graphene/TiO2 hybrids as high-performance anodes for microbial fuel cells. Zhao CE; Wang WJ; Sun D; Wang X; Zhang JR; Zhu JJ Chemistry; 2014 Jun; 20(23):7091-7. PubMed ID: 24753231 [TBL] [Abstract][Full Text] [Related]
19. A gold-sputtered carbon paper as an anode for improved electricity generation from a microbial fuel cell inoculated with Shewanella oneidensis MR-1. Sun M; Zhang F; Tong ZH; Sheng GP; Chen YZ; Zhao Y; Chen YP; Zhou SY; Liu G; Tian YC; Yu HQ Biosens Bioelectron; 2010 Oct; 26(2):338-43. PubMed ID: 20801013 [TBL] [Abstract][Full Text] [Related]
20. The utility of Shewanella japonica for microbial fuel cells. Biffinger JC; Fitzgerald LA; Ray R; Little BJ; Lizewski SE; Petersen ER; Ringeisen BR; Sanders WC; Sheehan PE; Pietron JJ; Baldwin JW; Nadeau LJ; Johnson GR; Ribbens M; Finkel SE; Nealson KH Bioresour Technol; 2011 Jan; 102(1):290-7. PubMed ID: 20663660 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]