These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
741 related articles for article (PubMed ID: 23399777)
21. Fat-free mass estimation by bioelectrical impedance and anthropometric techniques in Chinese children. Eston RG; Cruz A; Fu F; Fung LM J Sports Sci; 1993 Jun; 11(3):241-7. PubMed ID: 8336356 [TBL] [Abstract][Full Text] [Related]
22. Comparison of ultrasonographic and anthropometric methods to assess body fat in childhood obesity. Semiz S; Ozgören E; Sabir N Int J Obes (Lond); 2007 Jan; 31(1):53-8. PubMed ID: 16788571 [TBL] [Abstract][Full Text] [Related]
23. Influence of anthropometric parameters on the body composition measured by bioelectrical impedance analysis or DXA in children. Leppik A; Jürimäe T; Jürimäe J Acta Paediatr; 2004 Aug; 93(8):1036-41. PubMed ID: 15456192 [TBL] [Abstract][Full Text] [Related]
24. Obesity in Korean pre-adolescent school children: comparison of various anthropometric measurements based on bioelectrical impedance analysis. Yoo S; Lee SY; Kim KN; Sung E Int J Obes (Lond); 2006 Jul; 30(7):1086-90. PubMed ID: 16801945 [TBL] [Abstract][Full Text] [Related]
25. Cross-validation of anthropometric and bioelectrical resistance prediction equations for body composition in older people using the 4-compartment model as a criterion method. Goran MI; Toth MJ; Poehlman ET J Am Geriatr Soc; 1997 Jul; 45(7):837-43. PubMed ID: 9215335 [TBL] [Abstract][Full Text] [Related]
26. Foot-to-foot bioelectrical impedance analysis: a valuable tool for the measurement of body composition in children. Tyrrell VJ; Richards G; Hofman P; Gillies GF; Robinson E; Cutfield WS Int J Obes Relat Metab Disord; 2001 Feb; 25(2):273-8. PubMed ID: 11410831 [TBL] [Abstract][Full Text] [Related]
27. A comparison of fat mass and skeletal muscle mass estimation in male ultra-endurance athletes using bioelectrical impedance analysis and different anthropometric methods. Knechtle B; Wirth A; Knechtle P; Rosemann T; Rüst CA; Bescós R Nutr Hosp; 2011; 26(6):1420-7. PubMed ID: 22411391 [TBL] [Abstract][Full Text] [Related]
28. Gender differences in fat mass of 5-7-year old children. Mast M; Körtzinger I; König E; Müller MJ Int J Obes Relat Metab Disord; 1998 Sep; 22(9):878-84. PubMed ID: 9756246 [TBL] [Abstract][Full Text] [Related]
29. Comparisons of fatness indicators in Budapest children. Németh A; Bodzsár EB; Eiben OG Anthropol Anz; 1999 Dec; 57(4):325-37. PubMed ID: 10676569 [TBL] [Abstract][Full Text] [Related]
30. Relationships between plasma leptin levels and body composition parameters measured by different methods in postmenopausal women. Jürimäe T; Sudi K; Jürimäe J; Payerl D; Rüütel K Am J Hum Biol; 2003; 15(5):628-36. PubMed ID: 12953174 [TBL] [Abstract][Full Text] [Related]
31. Prediction of percentage body fat in rural thai population using simple anthropometric measurements. Pongchaiyakul C; Kosulwat V; Rojroongwasinkul N; Charoenkiatkul S; Thepsuthammarat K; Laopaiboon M; Nguyen TV; Rajatanavin R Obes Res; 2005 Apr; 13(4):729-38. PubMed ID: 15897482 [TBL] [Abstract][Full Text] [Related]
32. The influence of body build on estimates of body composition from anthropometric measurements in premenopausal women. Rutishauser IH; Pasco JA; Wheeler CE Eur J Clin Nutr; 1995 Apr; 49(4):248-55. PubMed ID: 7796782 [TBL] [Abstract][Full Text] [Related]
33. Inconsistencies in bioelectrical impedance and anthropometric measurements of fat mass in a field study of prepubertal children. Mast M; Sönnichsen A; Langnäse K; Labitzke K; Bruse U; Preub U; Muller MJ Br J Nutr; 2002 Feb; 87(2):163-75. PubMed ID: 11895169 [TBL] [Abstract][Full Text] [Related]
35. Analysis of body composition among children and adolescents - a cross-sectional study of the Polish population and comparison of body fat measurement methods. Golec J; Kmiotek EK; Czechowska D; Szczygieł E; Masłoń A; Tomaszewski KA; Golec EB J Pediatr Endocrinol Metab; 2014 Jul; 27(7-8):603-9. PubMed ID: 24825085 [TBL] [Abstract][Full Text] [Related]
36. Improved prediction of body fat by measuring skinfold thickness, circumferences, and bone breadths. Garcia AL; Wagner K; Hothorn T; Koebnick C; Zunft HJ; Trippo U Obes Res; 2005 Mar; 13(3):626-34. PubMed ID: 15833949 [TBL] [Abstract][Full Text] [Related]
37. [Assessment of the submandibular adipose skinfold for the determination of a nutritional status in children and adolescents]. Fleta Zaragozano J; Moreno Aznar LA; Mur de Frenne L; Bueno Lozano M; Feja Solana C; Sarría Chueca A; Bueno Sánchez M An Esp Pediatr; 1997 Sep; 47(3):258-62. PubMed ID: 9499277 [TBL] [Abstract][Full Text] [Related]
38. Relationships between biochemical abnormalities and anthropometric indices of overweight, adiposity and body fat distribution in Japanese elementary school children. Asayama K; Hayashibe H; Dobashi K; Uchida N; Kawada Y; Nakazawa S Int J Obes Relat Metab Disord; 1995 Apr; 19(4):253-9. PubMed ID: 7627249 [TBL] [Abstract][Full Text] [Related]
39. The influence of fat free mass on prediction of densitometric body composition by bioelectrical impedance analysis and by anthropometry. Han TS; Carter R; Currall JE; Lean ME Eur J Clin Nutr; 1996 Aug; 50(8):542-8. PubMed ID: 8863015 [TBL] [Abstract][Full Text] [Related]
40. [Diagnosis of overweight and obesity in schoolchildren: utilization of the body mass index international standard]. Giugliano R; Melo AL J Pediatr (Rio J); 2004; 80(2):129-34. PubMed ID: 15079183 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]