These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 23399807)

  • 1. Multimodal visibility (radiography, computed tomography, and magnetic resonance imaging) of microspheres for transarterial embolization tested in porcine kidneys.
    Sommer CM; Stampfl U; Bellemann N; Holzschuh M; Kueller A; Bluemmel J; Gehrig T; Shevchenko M; Kenngott HG; Kauczor HU; Pereira PL; Radeleff BA
    Invest Radiol; 2013 Apr; 48(4):213-22. PubMed ID: 23399807
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multimodal visibility of a modified polyzene-F-coated spherical embolic agent for liver embolization: feasibility study in a porcine model.
    Stampfl U; Sommer CM; Bellemann N; Holzschuh M; Kueller A; Bluemmel J; Gehrig T; Shevchenko M; Kenngott H; Kauczor HU; Radeleff B
    J Vasc Interv Radiol; 2012 Sep; 23(9):1225-31.e2. PubMed ID: 22832143
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multimodality Imaging of Ethiodized Oil-loaded Radiopaque Microspheres during Transarterial Embolization of Rabbits with VX2 Liver Tumors.
    Tacher V; Duran R; Lin M; Sohn JH; Sharma KV; Wang Z; Chapiro J; Gacchina Johnson C; Bhagat N; Dreher MR; Schäfer D; Woods DL; Lewis AL; Tang Y; Grass M; Wood BJ; Geschwind JF
    Radiology; 2016 Jun; 279(3):741-53. PubMed ID: 26678453
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MR imaging detection of superparamagnetic iron oxide loaded tris-acryl embolization microspheres.
    Namur J; Chapot R; Pelage JP; Wassef M; Langevin F; Labarre D; Laurent A
    J Vasc Interv Radiol; 2007 Oct; 18(10):1287-95. PubMed ID: 17911520
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Holmium-lipiodol-alginate microspheres for fluoroscopy-guided embolotherapy and multimodality imaging.
    Oerlemans C; Seevinck PR; Smits ML; Hennink WE; Bakker CJ; van den Bosch MA; Nijsen JF
    Int J Pharm; 2015 Mar; 482(1-2):47-53. PubMed ID: 25448561
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation and evaluation of MRI detectable poly (acrylic acid) microspheres loaded with superparamagnetic iron oxide nanoparticles for transcatheter arterial embolization.
    Wang H; Qin XY; Li ZY; Guo LY; Zheng ZZ; Liu LS; Fan TY
    Int J Pharm; 2016 Sep; 511(2):831-9. PubMed ID: 27426106
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Superselective particle embolization enhances efficacy of radiofrequency ablation: effects of particle size and sequence of action.
    Tanaka T; Isfort P; Braunschweig T; Westphal S; Woitok A; Penzkofer T; Bruners P; Kichikawa K; Schmitz-Rode T; Mahnken AH
    Cardiovasc Intervent Radiol; 2013 Jun; 36(3):773-82. PubMed ID: 23070107
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computed tomography and histopathological findings after embolization with inherently radiopaque 40μm-microspheres, standard 40μm-microspheres and iodized oil in a porcine liver model.
    Vollherbst DF; Gockner T; Do T; Holzer K; Mogler C; Flechsig P; Harms A; Schlett CL; Pereira PL; Richter GM; Kauczor HU; Sommer CM
    PLoS One; 2018; 13(7):e0198911. PubMed ID: 29985928
    [TBL] [Abstract][Full Text] [Related]  

  • 9. First multimodal embolization particles visible on x-ray/computed tomography and magnetic resonance imaging.
    Bartling SH; Budjan J; Aviv H; Haneder S; Kraenzlin B; Michaely H; Margel S; Diehl S; Semmler W; Gretz N; Schönberg SO; Sadick M
    Invest Radiol; 2011 Mar; 46(3):178-86. PubMed ID: 21263332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inherently Radiopaque Narrow-Size-Calibrated Microspheres: Proof of Principle in a Pig Embolization Model.
    Sommer CM; Harms A; Do TD; Gockner TL; Kriegsmann M; Schlett CL; Holzer K; Vollherbst D; Warth A; Pereira PL; Eichwald V; Jugold M; Kauczor HU; Flechsig P
    Cardiovasc Intervent Radiol; 2018 Sep; 41(9):1404-1411. PubMed ID: 29858644
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Novel Inherently Radiopaque Bead for Transarterial Embolization to Treat Liver Cancer - A Pre-clinical Study.
    Duran R; Sharma K; Dreher MR; Ashrafi K; Mirpour S; Lin M; Schernthaner RE; Schlachter TR; Tacher V; Lewis AL; Willis S; den Hartog M; Radaelli A; Negussie AH; Wood BJ; Geschwind JF
    Theranostics; 2016; 6(1):28-39. PubMed ID: 26722371
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Novel X-Ray Visible Zein-Based Non-adhesive Precipitating Liquid Embolic HEI
    Vollherbst DF; Do TD; Jugold M; Eichwald V; Macher-Göppinger S; Pereira PL; Bendszus M; Möhlenbruch MA; Richter GM; Kauczor HU; Sommer CM
    Cardiovasc Intervent Radiol; 2019 Jun; 42(6):905-914. PubMed ID: 30761410
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel MR-Visible, Biodegradable Microspheres for Transcatheter Arterial Embolization: Experimental Study in a Rabbit Renal Model.
    Stechele M; Wittgenstein H; Stolzenburg N; Schnorr J; Neumann J; Schmidt C; Günther RW; Streitparth F
    Cardiovasc Intervent Radiol; 2020 Oct; 43(10):1515-1527. PubMed ID: 32514611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeting and recanalization after embolization with calibrated resorbable microspheres versus hand-cut gelatin sponge particles in a porcine kidney model.
    Maeda N; Verret V; Moine L; Bédouet L; Louguet S; Servais E; Osuga K; Tomiyama N; Wassef M; Laurent A
    J Vasc Interv Radiol; 2013 Sep; 24(9):1391-8. PubMed ID: 23891049
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantification and reduction of reflux during embolotherapy using an antireflux catheter and tantalum microspheres: ex vivo analysis.
    Arepally A; Chomas J; Kraitchman D; Hong K
    J Vasc Interv Radiol; 2013 Apr; 24(4):575-80. PubMed ID: 23462064
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective embolization with magnetized microbeads using magnetic resonance navigation in a controlled-flow liver model.
    Michaud F; Li N; Plantefève R; Nosrati Z; Tremblay C; Saatchi K; Moran G; Bigot A; Häfeli UO; Kadoury S; Tang A; Perreault P; Martel S; Soulez G
    Med Phys; 2019 Feb; 46(2):789-799. PubMed ID: 30451303
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of "imageable" beads for transcatheter embolotherapy.
    Sharma KV; Dreher MR; Tang Y; Pritchard W; Chiesa OA; Karanian J; Peregoy J; Orandi B; Woods D; Donahue D; Esparza J; Jones G; Willis SL; Lewis AL; Wood BJ
    J Vasc Interv Radiol; 2010 Jun; 21(6):865-76. PubMed ID: 20494290
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Embolic effects of transcatheter mesenteric arterial embolization with microspheres on the small bowel in a dog model.
    Kishimoto K; Osuga K; Maeda N; Higashi Y; Hayashi A; Hori Y; Nakamura M; Ohashi F; Morii E; Tomiyama N
    J Vasc Interv Radiol; 2014 Nov; 25(11):1767-73. PubMed ID: 25108817
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diffusion-weighted magnetic resonance imaging to evaluate microvascular density after transarterial embolization ablation in a rabbit VX2 liver tumor model.
    Qian T; Chen M; Gao F; Meng F; Gao X; Yin H
    Magn Reson Imaging; 2014 Oct; 32(8):1052-7. PubMed ID: 24970024
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The arterial distribution of Embozene and Embosphere microspheres in sheep kidney and uterus embolization models.
    Verret V; Ghegediban SH; Wassef M; Pelage JP; Golzarian J; Laurent A
    J Vasc Interv Radiol; 2011 Feb; 22(2):220-8. PubMed ID: 21276915
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.