These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

54 related articles for article (PubMed ID: 23399827)

  • 1. Compression-induced hyperaemia in the rabbit masseter muscle: a model to investigate vascular mechano-sensitivity of skeletal muscle.
    Turturici M; Roatta S
    Physiol Meas; 2013 Mar; 34(3):307-14. PubMed ID: 23399827
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inactivation of mechano-sensitive dilatation upon repetitive mechanical stimulation of the musculo-vascular network in the rabbit.
    Turturici M; Roatta S
    J Physiol Pharmacol; 2013 Jun; 64(3):299-308. PubMed ID: 23959726
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of gadolinium chloride on basal flow and compression-induced rapid hyperemia in the rabbit masseter muscle.
    Turturici M; Roatta S
    J Physiol Pharmacol; 2014 Jun; 65(3):409-15. PubMed ID: 24930513
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence that the contraction-induced rapid hyperemia in rabbit masseter muscle is based on a mechanosensitive mechanism, not shared by cutaneous vascular beds.
    Turturici M; Mohammed M; Roatta S
    J Appl Physiol (1985); 2012 Aug; 113(4):524-31. PubMed ID: 22678964
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A model for investigating the control of muscle blood flow: the masseteric artery in conscious rabbits.
    Roatta S; Mohammed M; Turturici M; Milano L; Passatore M
    Physiol Meas; 2010 Sep; 31(9):N71-7. PubMed ID: 20702917
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resistance responses in proximal arterial vessels, arterioles and veins during reactive hyperaemia in skeletal muscle and their underlying regulatory mechanisms.
    Björnberg J; Albert U; Mellander S
    Acta Physiol Scand; 1990 Aug; 139(4):535-50. PubMed ID: 2248033
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Repetitive muscle compression reduces vascular mechano-sensitivity and the hyperemic response to muscle contraction.
    Messere A; Turturici M; Millo G; Roatta S
    J Physiol Pharmacol; 2017 Jun; 68(3):427-437. PubMed ID: 28820399
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Role of compression of the vessels of the gastrocnemius muscle in changes in its blood supply during stretching].
    Shustova NIa; Matchanov AT; Levtov VA
    Fiziol Zh SSSR Im I M Sechenova; 1985 Sep; 71(9):1105-11. PubMed ID: 4054395
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vasodilatation is obligatory for contraction-induced hyperaemia in canine skeletal muscle.
    Hamann JJ; Buckwalter JB; Clifford PS
    J Physiol; 2004 Jun; 557(Pt 3):1013-20. PubMed ID: 15073277
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exercise-induced hyperemia unmasks regional blood flow deficit in experimental hindlimb ischemia.
    Brevetti LS; Paek R; Brady SE; Hoffman JI; Sarkar R; Messina LM
    J Surg Res; 2001 Jun; 98(1):21-6. PubMed ID: 11368533
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dexmedetomidine dose dependently decreases oral tissue blood flow during sevoflurane and propofol anesthesia in rabbits.
    Sazuka S; Matsuura N; Ichinohe T
    J Oral Maxillofac Surg; 2012 Aug; 70(8):1808-14. PubMed ID: 22632928
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coronary reactive hyperaemia and arterial pressure in anaesthetized goats.
    Fernández N; Monge L; García-Villalón AL; Diéguez G
    Exp Physiol; 2006 Sep; 91(5):915-23. PubMed ID: 16777933
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microvascular blood flow distribution in skeletal muscle. An intravital microscopic study in the rabbit.
    Lindbom L
    Acta Physiol Scand Suppl; 1983; 525():1-40. PubMed ID: 6588730
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flow-mediated dilation and exercise-induced hyperaemia in highly trained athletes: comparison of the upper and lower limb vasculature.
    Walther G; Nottin S; Karpoff L; Pérez-Martin A; Dauzat M; Obert P
    Acta Physiol (Oxf); 2008 Jun; 193(2):139-50. PubMed ID: 18294338
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acute stress reduces blood flow in the orofacial area, in conscious rabbits.
    Roatta S; Mohammed M; Passatore M
    Arch Oral Biol; 2009 Apr; 54(4):380-8. PubMed ID: 19232570
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tissue blood flow reductions induced by remifentanil in rabbits and the effect of naloxone and phentolamine on these changes.
    Nishizawa S; Ichinohe T; Kaneko Y
    J Oral Maxillofac Surg; 2012 Apr; 70(4):797-802. PubMed ID: 22326170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of chronic and experimental jaw muscle pain on pain-pressure thresholds and stimulus-response curves.
    Svensson P; Arendt-Nielsen L; Nielsen H; Larsen JK
    J Orofac Pain; 1995; 9(4):347-56. PubMed ID: 8995906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessing mechanical sensitivity of masseter muscle in lightly anesthetized rats: a model for craniofacial muscle hyperalgesia.
    Ro JY; Capra NF
    Neurosci Res; 2006 Sep; 56(1):119-23. PubMed ID: 16857282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of coronary blood flow during exercise.
    Duncker DJ; Bache RJ
    Physiol Rev; 2008 Jul; 88(3):1009-86. PubMed ID: 18626066
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rocuronium and vecuronium do not affect mandibular bone marrow and masseter muscular blood flow in rabbits.
    Terakawa Y; Ichinohe T; Kaneko Y
    J Oral Maxillofac Surg; 2010 Jan; 68(1):15-20. PubMed ID: 20006149
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.