BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 23400011)

  • 1. Fabrication and photoelectrochemical properties of ZnS/Au/TiO2 nanotube array films.
    Zhu YF; Zhang J; Xu L; Guo Y; Wang XP; Du RG; Lin CJ
    Phys Chem Chem Phys; 2013 Mar; 15(11):4041-8. PubMed ID: 23400011
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A strategy to enhance the efficiency of dye-sensitized solar cells by the highly efficient TiO2/ZnS photoanode.
    Srinivasa Rao S; Punnoose D; Venkata Tulasivarma Ch; Pavan Kumar CH; Gopi CV; Kim SK; Kim HJ
    Dalton Trans; 2015 Feb; 44(5):2447-55. PubMed ID: 25556975
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CdTe and graphene co-sensitized TiO2 nanotube array photoanodes for protection of 304SS under visible light.
    Li H; Wang X; Zhang L; Hou B
    Nanotechnology; 2015 Apr; 26(15):155704. PubMed ID: 25804558
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photocathodic Protection of 304 Stainless Steel by Bi
    Li H; Wang X; Wei Q; Hou B
    Nanoscale Res Lett; 2017 Dec; 12(1):80. PubMed ID: 28138896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmon-induced enhancement in analytical performance based on gold nanoparticles deposited on TiO2 film.
    Zhu A; Luo Y; Tian Y
    Anal Chem; 2009 Sep; 81(17):7243-7. PubMed ID: 19655788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoscale connectivity in a TiO2/CdSe quantum dots/functionalized graphene oxide nanosheets/Au nanoparticles composite for enhanced photoelectrochemical solar cell performance.
    Narayanan R; Deepa M; Srivastava AK
    Phys Chem Chem Phys; 2012 Jan; 14(2):767-78. PubMed ID: 22108634
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PbS sensitized TiO2 nanotube arrays with different sizes and filling degrees for enhancing photoelectrochemical properties.
    Cai F; Yang F; Zhang Y; Ke C; Cheng C; Zhao Y; Yan G
    Phys Chem Chem Phys; 2014 Nov; 16(43):23967-74. PubMed ID: 25286398
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bi
    Wang W; Wang X; Wang N; Ning X; Li H; Lu D; Liu X; Zhang Q; Huang Y
    Nanoscale Res Lett; 2018 Sep; 13(1):295. PubMed ID: 30242603
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extending the photoresponse of TiO2 to the visible light region: photoelectrochemical behavior of TiO2 thin films prepared by the radio frequency magnetron sputtering deposition method.
    Kikuchi H; Kitano M; Takeuchi M; Matsuoka M; Anpo M; Kamat PV
    J Phys Chem B; 2006 Mar; 110(11):5537-41. PubMed ID: 16539493
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coaxial heterogeneous structure of TiO2 nanotube arrays with CdS as a superthin coating synthesized via modified electrochemical atomic layer deposition.
    Zhu W; Liu X; Liu H; Tong D; Yang J; Peng J
    J Am Chem Soc; 2010 Sep; 132(36):12619-26. PubMed ID: 20536235
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of highly ordered TiO2 nanotube arrays using an organic electrolyte.
    Ruan C; Paulose M; Varghese OK; Mor GK; Grimes CA
    J Phys Chem B; 2005 Aug; 109(33):15754-9. PubMed ID: 16852999
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fast fabrication of long TiO2 nanotube array with high photoelectrochemical property on flexible stainless steel.
    Tao J; Wu T; Gao P
    J Nanosci Nanotechnol; 2012 Mar; 12(3):1852-8. PubMed ID: 22754990
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation of FeS
    Wang N; Wang J; Liu M; Ge C; Hou B; Liu N; Ning Y; Hu Y
    Sci Rep; 2021 Apr; 11(1):7509. PubMed ID: 33820948
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Construction of ZnO/ZnS/CdS/CuInS₂ core-shell nanowire arrays via ion exchange: p-n junction photoanode with enhanced photoelectrochemical activity under visible light.
    Yu YX; Ouyang WX; Liao ZT; Du BB; Zhang WD
    ACS Appl Mater Interfaces; 2014 Jun; 6(11):8467-74. PubMed ID: 24758144
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced Catalytic Activities of TiO₂ Nanotube Arrays Co-Sensitized with Pt/CdS/ZnS via Electrodeposition and Successive Ionic Layer Adsorption and Reaction (SILAR) Method Approach.
    Manh Nguyen V; Tung Ngo T; Trang Bui TT; Hop Tran TT; Huu Nguyen T; Cong Trinh D
    J Nanosci Nanotechnol; 2021 Dec; 21(12):6111-6119. PubMed ID: 34229811
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved charge transfer and photoelectrochemical performance of CuI/Sb2S3/TiO2 heterostructure nanotube arrays.
    Yang F; Xi J; Gan LY; Wang Y; Lu S; Ma W; Cai F; Zhang Y; Cheng C; Zhao Y
    J Colloid Interface Sci; 2016 Feb; 464():1-9. PubMed ID: 26598949
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ternary nanocomposites of Au/CuS/TiO
    Wang Y; Bai L; Wang Y; Qin D; Shan D; Lu X
    Analyst; 2018 Mar; 143(7):1699-1704. PubMed ID: 29521385
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of highly ordered TiO2 nanorod/nanotube adjacent arrays for photoelectrochemical applications.
    Zhang H; Liu P; Liu X; Zhang S; Yao X; An T; Amal R; Zhao H
    Langmuir; 2010 Jul; 26(13):11226-32. PubMed ID: 20384304
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A photoelectrochemical immunosensor based on Au-doped TiO2 nanotube arrays for the detection of α-synuclein.
    An Y; Tang L; Jiang X; Chen H; Yang M; Jin L; Zhang S; Wang C; Zhang W
    Chemistry; 2010 Dec; 16(48):14439-46. PubMed ID: 21038326
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Graphene oxide modified TiO2 nanotube arrays: enhanced visible light photoelectrochemical properties.
    Song P; Zhang X; Sun M; Cui X; Lin Y
    Nanoscale; 2012 Mar; 4(5):1800-4. PubMed ID: 22297577
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.