These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 23400140)

  • 1. Microsoft Kinect based head tracking for Life Size Collaborative Surgical Simulation Environments (LS-CollaSSLE).
    Dargar S; Nunno A; Sankaranarayanan G; De S
    Stud Health Technol Inform; 2013; 184():109-13. PubMed ID: 23400140
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A portable immersive surgery training system using RGB-D sensors.
    Guo X; Lopez LD; Yu Z; Steiner KV; Barner KE; Bauer TL; Yu J
    Stud Health Technol Inform; 2013; 184():161-7. PubMed ID: 23400150
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MicroSim - a microsurgical training simulator.
    Hüsken N; Schuppe O; Sismanidis E; Beier F
    Stud Health Technol Inform; 2013; 184():205-9. PubMed ID: 23400157
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pattern cutting and ligating loop simulation in Virtual Basic Laparoscopic Skill Trainer (VBLaST.
    Ahn W; Halic T; De S
    Stud Health Technol Inform; 2013; 184():1-5. PubMed ID: 23400120
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The use of rotational optical encoders for dial sensing in the Virtual translumenal Endoscopic Surgical Trainer (VTEST.
    Dargar S; Sankaranarayanan G; De S
    Stud Health Technol Inform; 2013; 184():103-5. PubMed ID: 23400138
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advanced da Vinci Surgical System simulator for surgeon training and operation planning.
    Sun LW; Van Meer F; Schmid J; Bailly Y; Thakre AA; Yeung CK
    Int J Med Robot; 2007 Sep; 3(3):245-51. PubMed ID: 17576641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Instrumentation of a clinical colonoscope for surgical simulation.
    Maillard P; Flaction L; Samur E; Hellier D; Passenger J; Bleuler H
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():70-3. PubMed ID: 19162596
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An integrated approach to endoscopic instrument tracking for augmented reality applications in surgical simulation training.
    Loukas C; Lahanas V; Georgiou E
    Int J Med Robot; 2013 Dec; 9(4):e34-51. PubMed ID: 23355307
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Image-driven haptic simulation of arthroscopic surgery.
    Rasool S; Sourin A; Kagda F
    Stud Health Technol Inform; 2013; 184():337-43. PubMed ID: 23400181
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Objective performance measures using motion sensors on an endoscopic tool for evaluating skills in natural orifice translumenal endoscopic surgery (NOTES).
    Chin LI; Sankaranarayanan G; Dargar S; Matthes K; De S
    Stud Health Technol Inform; 2013; 184():78-84. PubMed ID: 23400134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A demonstration of the Storz C-CAM in endoscopic imagery projection for far forward battlefield telemetric support and training.
    Boedeker BH; Bernhagen MA; Derrick DC; Abadia de Barbara AH; Del Real Colomo A; Hillan Garcia L; Setién F; Nicholas TA
    Stud Health Technol Inform; 2013; 184():51-5. PubMed ID: 23400129
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surgical navigation with a head-mounted tracking system and display.
    Sadda P; Azimi E; Jallo G; Doswell J; Kazanzides P
    Stud Health Technol Inform; 2013; 184():363-9. PubMed ID: 23400185
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Requirements analysis of a 5 degree of freedom haptic simulator for orthopedic trauma surgery.
    Barrow A; Akhtar K; Gupte C; Bello F
    Stud Health Technol Inform; 2013; 184():43-7. PubMed ID: 23400127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NeuroSim--the prototype of a neurosurgical training simulator.
    Beier F; Diederich S; Schmieder K; Männer R
    Stud Health Technol Inform; 2011; 163():51-6. PubMed ID: 21335757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advanced virtual endoscopy for endoscopic transsphenoidal pituitary surgery.
    Wolfsberger S; Neubauer A; Bühler K; Wegenkittl R; Czech T; Gentzsch S; Böcher-Schwarz HG; Knosp E
    Neurosurgery; 2006 Nov; 59(5):1001-9; discussion 1009-10. PubMed ID: 17143234
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Image fusion, virtual reality, robotics and navigation. Effects on surgical practice].
    Maresceaux J; Soler L; Ceulemans R; Garcia A; Henri M; Dutson E
    Chirurg; 2002 May; 73(5):422-7. PubMed ID: 12089824
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of a low-cost 3D sound system for immersive virtual reality training systems.
    Doerr KU; Rademacher H; Huesgen S; Kubbat W
    IEEE Trans Vis Comput Graph; 2007; 13(2):204-12. PubMed ID: 17218739
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A training system of orientation and mobility for blind people using acoustic virtual reality.
    Seki Y; Sato T
    IEEE Trans Neural Syst Rehabil Eng; 2011 Feb; 19(1):95-104. PubMed ID: 20805059
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Co-located haptic and 3D graphic interface for medical simulations.
    Berkelman P; Miyasaka M; Bozlee S
    Stud Health Technol Inform; 2013; 184():48-50. PubMed ID: 23400128
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The development of a haptic interface for the Virtual Translumenal Endoscopic Surgical Trainer (VTEST.
    Dargar S; Solley T; Nemani A; Brino C; Sankaranarayanan G; De S
    Stud Health Technol Inform; 2013; 184():106-8. PubMed ID: 23400139
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.