These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 23400163)

  • 1. Stereoscopic vision-based robotic manipulator extraction method for enhanced soft tissue reconstruction.
    Kowalczuk J; Psota E; Pérez LC
    Stud Health Technol Inform; 2013; 184():235-41. PubMed ID: 23400163
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A probabilistic framework for tracking deformable soft tissue in minimally invasive surgery.
    Mountney P; Lo B; Thiemjarus S; Stoyanov D; Zhong-Yang G
    Med Image Comput Comput Assist Interv; 2007; 10(Pt 2):34-41. PubMed ID: 18044550
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gaze-contingent soft tissue deformation tracking for minimally invasive robotic surgery.
    Mylonas GP; Stoyanov D; Deligianni F; Darzi A; Yang GZ
    Med Image Comput Comput Assist Interv; 2005; 8(Pt 1):843-50. PubMed ID: 16685925
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Augmented reality to the rescue of the minimally invasive surgeon. The usefulness of the interposition of stereoscopic images in the Da Vinci™ robotic console.
    Volonté F; Buchs NC; Pugin F; Spaltenstein J; Schiltz B; Jung M; Hagen M; Ratib O; Morel P
    Int J Med Robot; 2013 Sep; 9(3):e34-8. PubMed ID: 23239589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. From medical images to minimally invasive intervention: Computer assistance for robotic surgery.
    Lee SL; Lerotic M; Vitiello V; Giannarou S; Kwok KW; Visentini-Scarzanella M; Yang GZ
    Comput Med Imaging Graph; 2010 Jan; 34(1):33-45. PubMed ID: 19699056
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel virtual reality environment for preoperative planning and simulation of image guided intracardiac surgeries with robotic manipulators.
    Yeniaras E; Deng Z; Syed MA; Davies MG; Tsekos NV
    Stud Health Technol Inform; 2011; 163():716-22. PubMed ID: 21335887
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Feature classification for tracking articulated surgical tools.
    Reiter A; Allen PK; Zhao T
    Med Image Comput Comput Assist Interv; 2012; 15(Pt 2):592-600. PubMed ID: 23286097
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pq-space based non-photorealistic rendering for augmented reality.
    Lerotic M; Chung AJ; Mylonas G; Yang GZ
    Med Image Comput Comput Assist Interv; 2007; 10(Pt 2):102-9. PubMed ID: 18044558
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dense soft tissue 3D reconstruction refined with super-pixel segmentation for robotic abdominal surgery.
    Penza V; Ortiz J; Mattos LS; Forgione A; De Momi E
    Int J Comput Assist Radiol Surg; 2016 Feb; 11(2):197-206. PubMed ID: 26410837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Action- and workflow-driven augmented reality for computer-aided medical procedures.
    Navab N; Traub J; Sielhorst T; Feuerstein M; Bichlmeier C
    IEEE Comput Graph Appl; 2007; 27(5):10-4. PubMed ID: 17913019
    [No Abstract]   [Full Text] [Related]  

  • 11. Console-integrated stereoscopic OsiriX 3D volume-rendered images for da Vinci colorectal robotic surgery.
    Volonté F; Pugin F; Buchs NC; Spaltenstein J; Hagen M; Ratib O; Morel P
    Surg Innov; 2013 Apr; 20(2):158-63. PubMed ID: 22549904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combined endo- and exoscopic semi-robotic manipulator system for image guided operations.
    Serefoglou S; Lauer W; Perneczky A; Lutze T; Radermacher K
    Med Image Comput Comput Assist Interv; 2006; 9(Pt 1):511-8. PubMed ID: 17354929
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic augmented reality for sensory substitution in robot-assisted surgical systems.
    Akinbiyi T; Reiley CE; Saha S; Burschka D; Hasser CJ; Yuh DD; Okamura AM
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():567-70. PubMed ID: 17945986
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional laparoscopy: a new tool in the surgeon's armamentarium.
    Buchs NC; Morel P
    Surg Technol Int; 2013 Sep; 23():19-22. PubMed ID: 23700184
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Soft tissue deformation tracking for robotic assisted minimally invasive surgery.
    Stoyanov D; Yang GZ
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():254-7. PubMed ID: 19964473
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laparoscopic image analysis for robotic arm guidance.
    Gketsis ZE; Tzagkas D; Hatzilias PV; Zervakis ME
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():148-51. PubMed ID: 17945572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Image-guided robotic surgery.
    Marescaux J; Solerc L
    Semin Laparosc Surg; 2004 Jun; 11(2):113-22. PubMed ID: 15254650
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulating tele-manipulator controlled tool-tissue interactions using a nonlinear FEM deformable model.
    Wang DA; Faraci A; Bello F; Darzi A
    Stud Health Technol Inform; 2006; 119():565-7. PubMed ID: 16404122
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stereo image-based arm tracking for in vivo surgical robotics.
    Psota E; Strabala K; Dumpert J; Pérez LC; Farritor S; Oleynikov D
    Stud Health Technol Inform; 2011; 163():454-60. PubMed ID: 21335838
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Collision detection and untangling for surgical robotic manipulators.
    Morvan T; Martinsen M; Reimers M; Samset E; Elle OJ
    Int J Med Robot; 2009 Sep; 5(3):233-42. PubMed ID: 19367614
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.