These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 23400171)

  • 21. Effects of trunk restraint combined with intensive task practice on poststroke upper extremity reach and function: a pilot study.
    Woodbury ML; Howland DR; McGuirk TE; Davis SB; Senesac CR; Kautz S; Richards LG
    Neurorehabil Neural Repair; 2009 Jan; 23(1):78-91. PubMed ID: 18812433
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of computer games for assessment and training in post-stroke arm telerehabilitation.
    Rodriguez-de-Pablo C; Perry JC; Cavallaro FI; Zabaleta H; Keller T
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4571-4. PubMed ID: 23366945
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An affordable, computerised, table-based exercise system for stroke survivors.
    King M; Hale L; Pekkari A; Persson M; Gregorsson M; Nilsson M
    Disabil Rehabil Assist Technol; 2010 Jul; 5(4):288-93. PubMed ID: 20302419
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Gesture therapy: a vision-based system for upper extremity stroke rehabilitation.
    Sucar L; Luis R; Leder R; Hernandez J; Sanchez I
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():3690-3. PubMed ID: 21096856
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Long-term hand tele-rehabilitation on the PlayStation 3: benefits and challenges.
    Burdea GC; Jain A; Rabin B; Pellosie R; Golomb M
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1835-8. PubMed ID: 22254686
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evaluating the Impact of Player Experience in the Design of a Serious Game for Upper Extremity Stroke Rehabilitation.
    Cordeiro d'Ornellas M; Cargnin DJ; Cervi Prado AL
    Stud Health Technol Inform; 2015; 216():363-7. PubMed ID: 26262072
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A low cost, adaptive mixed reality system for home-based stroke rehabilitation.
    Chen Y; Baran M; Sundaram H; Rikakis T
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1827-30. PubMed ID: 22254684
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Virtual reality aided training of combined arm and leg movements of children with CP.
    Riener R; Dislaki E; Keller U; Koenig A; Van Hedel H; Nagle A
    Stud Health Technol Inform; 2013; 184():349-55. PubMed ID: 23400183
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A randomized controlled trial of gravity-supported, computer-enhanced arm exercise for individuals with severe hemiparesis.
    Housman SJ; Scott KM; Reinkensmeyer DJ
    Neurorehabil Neural Repair; 2009 Jun; 23(5):505-14. PubMed ID: 19237734
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effects of post-stroke upper-limb training with an electromyography (EMG)-driven hand robot.
    Hu XL; Tong KY; Wei XJ; Rong W; Susanto EA; Ho SK
    J Electromyogr Kinesiol; 2013 Oct; 23(5):1065-74. PubMed ID: 23932795
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Arm stiffness during assisted movement after stroke: the influence of visual feedback and training.
    Piovesan D; Morasso P; Giannoni P; Casadio M
    IEEE Trans Neural Syst Rehabil Eng; 2013 May; 21(3):454-65. PubMed ID: 23193322
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A novel adaptive mixed reality system for stroke rehabilitation: principles, proof of concept, and preliminary application in 2 patients.
    Chen Y; Duff M; Lehrer N; Liu SM; Blake P; Wolf SL; Sundaram H; Rikakis T
    Top Stroke Rehabil; 2011; 18(3):212-30. PubMed ID: 21642059
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Force and touch make video games 'serious' for dexterity rehabilitation.
    Confalonieri M; Guandalini G; Da Lio M; De Cecco M
    Stud Health Technol Inform; 2012; 177():139-44. PubMed ID: 22942045
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Adaptive rehabilitation games.
    Barzilay O; Wolf A
    J Electromyogr Kinesiol; 2013 Feb; 23(1):182-9. PubMed ID: 23141481
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Virtual immersion for post-stroke hand rehabilitation therapy.
    Tsoupikova D; Stoykov NS; Corrigan M; Thielbar K; Vick R; Li Y; Triandafilou K; Preuss F; Kamper D
    Ann Biomed Eng; 2015 Feb; 43(2):467-77. PubMed ID: 25558845
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A motor imagery based brain-computer interface for stroke rehabilitation.
    Ortner R; Irimia DC; Scharinger J; Guger C
    Stud Health Technol Inform; 2012; 181():319-23. PubMed ID: 22954880
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Virtual reality environments for post-stroke arm rehabilitation.
    Subramanian S; Knaut LA; Beaudoin C; McFadyen BJ; Feldman AG; Levin MF
    J Neuroeng Rehabil; 2007 Jun; 4():20. PubMed ID: 17587441
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Computer-based rehabilitation of cognitive impairments and motor arm function of patients with hemiparesis after stroke].
    Otfinowski J; Jasiak-Tyrkalska B; Starowicz A; ReguĊ‚a K
    Neurol Neurochir Pol; 2006; 40(2):112-8. PubMed ID: 16628507
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development of a virtual reality system for the rehabilitation of the upper limb after stroke.
    Crosbie J; McDonough S; Lennon S; McNeill M
    Stud Health Technol Inform; 2005; 117():218-22. PubMed ID: 16282673
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Assisted movement with enhanced sensation (AMES): coupling motor and sensory to remediate motor deficits in chronic stroke patients.
    Cordo P; Lutsep H; Cordo L; Wright WG; Cacciatore T; Skoss R
    Neurorehabil Neural Repair; 2009 Jan; 23(1):67-77. PubMed ID: 18645190
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.