These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 23400202)

  • 1. Virtual Reality environment assisting post stroke hand rehabilitation: case report.
    Tsoupikova D; Stoykov N; Kamper D; Vick R
    Stud Health Technol Inform; 2013; 184():458-64. PubMed ID: 23400202
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Spatial Augmented Reality rehab system for post-stroke hand rehabilitation.
    Mousavi Hondori H; Khademi M; Dodakian L; Cramer SC; Lopes CV
    Stud Health Technol Inform; 2013; 184():279-85. PubMed ID: 23400171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A pneumatic glove and immersive virtual reality environment for hand rehabilitative training after stroke.
    Connelly L; Jia Y; Toro ML; Stoykov ME; Kenyon RV; Kamper DG
    IEEE Trans Neural Syst Rehabil Eng; 2010 Oct; 18(5):551-9. PubMed ID: 20378482
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Virtual reality and a haptic master-slave set-up in post-stroke upper-limb rehabilitation.
    Houtsma JA; Van Houten FJ
    Proc Inst Mech Eng H; 2006 Aug; 220(6):715-8. PubMed ID: 16961191
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reaching within video-capture virtual reality: using virtual reality as a motor control paradigm.
    Dvorkin AY; Shahar M; Weiss PL
    Cyberpsychol Behav; 2006 Apr; 9(2):133-6. PubMed ID: 16640465
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptive rehabilitation games.
    Barzilay O; Wolf A
    J Electromyogr Kinesiol; 2013 Feb; 23(1):182-9. PubMed ID: 23141481
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Feasibility study of TheraDrive: a low-cost game-based environment for the delivery of upper arm stroke therapy.
    Johnson MJ; Ramachandran B; Paranjape RP; Kosasih JB
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():695-8. PubMed ID: 17946851
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Virtual reality in the rehabilitation of the upper limb after stroke: the user's perspective.
    Crosbie JH; Lennon S; McNeill MD; McDonough SM
    Cyberpsychol Behav; 2006 Apr; 9(2):137-41. PubMed ID: 16640466
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neuro-physical rehabilitation by means of novel touch technologies.
    Confalonieri M; Tomasi P; Depaul M; Guandalini G; Baldessari M; Oss D; Prada F; Mazzalai A; Da Lio M; De Cecco M
    Stud Health Technol Inform; 2013; 189():158-63. PubMed ID: 23739376
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bio cooperative robotic platform for motor function recovery of the upper limb after stroke.
    Rodriguez Guerrero C; Fraile Marinero J; Perez Turiel J; Rivera Farina P
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():4472-5. PubMed ID: 21095774
    [TBL] [Abstract][Full Text] [Related]  

  • 11. HandCARE: a cable-actuated rehabilitation system to train hand function after stroke.
    Dovat L; Lambercy O; Gassert R; Maeder T; Milner T; Leong TC; Burdet E
    IEEE Trans Neural Syst Rehabil Eng; 2008 Dec; 16(6):582-91. PubMed ID: 19144590
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Virtual reality-enhanced stroke rehabilitation.
    Jack D; Boian R; Merians AS; Tremaine M; Burdea GC; Adamovich SV; Recce M; Poizner H
    IEEE Trans Neural Syst Rehabil Eng; 2001 Sep; 9(3):308-18. PubMed ID: 11561668
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hand function recovery in chronic stroke with HEXORR robotic training: A case series.
    Godfrey SB; Schabowsky CN; Holley RJ; Lum PS
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():4485-8. PubMed ID: 21095777
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of post-stroke upper-limb training with an electromyography (EMG)-driven hand robot.
    Hu XL; Tong KY; Wei XJ; Rong W; Susanto EA; Ho SK
    J Electromyogr Kinesiol; 2013 Oct; 23(5):1065-74. PubMed ID: 23932795
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Virtual rehabilitation in an activity centre for community-dwelling persons with stroke. The possibilities of 3-dimensional computer games.
    Broeren J; Claesson L; Goude D; Rydmark M; Sunnerhagen KS
    Cerebrovasc Dis; 2008; 26(3):289-96. PubMed ID: 18667809
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a virtual reality system for the rehabilitation of the upper limb after stroke.
    Crosbie J; McDonough S; Lennon S; McNeill M
    Stud Health Technol Inform; 2005; 117():218-22. PubMed ID: 16282673
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Us'em: the user-centered design of a device for motivating stroke patients to use their impaired arm-hand in daily life activities.
    Markopoulos P; Timmermans AA; Beursgens L; van Donselaar R; Seelen HA
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5182-7. PubMed ID: 22255506
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Video game interfaces for interactive lower and upper member therapy.
    Uribe-Quevedo A; Perez-Gutierrez B; Alves S
    Stud Health Technol Inform; 2013; 184():465-7. PubMed ID: 23400203
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gesture therapy: a vision-based system for upper extremity stroke rehabilitation.
    Sucar L; Luis R; Leder R; Hernandez J; Sanchez I
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():3690-3. PubMed ID: 21096856
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A low cost, adaptive mixed reality system for home-based stroke rehabilitation.
    Chen Y; Baran M; Sundaram H; Rikakis T
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1827-30. PubMed ID: 22254684
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.