BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 23400262)

  • 1. The importance of the TiO2/quantum dots interface in the recombination processes of quantum dot sensitized solar cells.
    Tachan Z; Hod I; Shalom M; Grinis L; Zaban A
    Phys Chem Chem Phys; 2013 Mar; 15(11):3841-5. PubMed ID: 23400262
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recombination in quantum dot sensitized solar cells.
    Mora-Seró I; Giménez S; Fabregat-Santiago F; Gómez R; Shen Q; Toyoda T; Bisquert J
    Acc Chem Res; 2009 Nov; 42(11):1848-57. PubMed ID: 19722527
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interface Passivation Effects on the Photovoltaic Performance of Quantum Dot Sensitized Inverse Opal TiO₂ Solar Cells.
    Hori K; Zhang Y; Tusamalee P; Nakazawa N; Yoshihara Y; Wang R; Toyoda T; Hayase S; Shen Q
    Nanomaterials (Basel); 2018 Jun; 8(7):. PubMed ID: 29941828
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of photoanode surface coverage by a sensitizer on the photovoltaic performance of titania based CdS quantum dot sensitized solar cells.
    Prasad RM; Pathan HM
    Nanotechnology; 2016 Apr; 27(14):145402. PubMed ID: 26916535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation of multilayered CdSe quantum dot sensitizers by electrostatic layer-by-layer assembly and a series of post-treatments toward efficient quantum dot-sensitized mesoporous TiO2 solar cells.
    Jin H; Choi S; Velu R; Kim S; Lee HJ
    Langmuir; 2012 Mar; 28(12):5417-26. PubMed ID: 22380945
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased Quantum Dot Loading by pH Control Reduces Interfacial Recombination in Quantum-Dot-Sensitized Solar Cells.
    Roelofs KE; Herron SM; Bent SF
    ACS Nano; 2015 Aug; 9(8):8321-34. PubMed ID: 26244426
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Charging of quantum dots by sulfide redox electrolytes reduces electron injection efficiency in quantum dot sensitized solar cells.
    Zhu H; Song N; Lian T
    J Am Chem Soc; 2013 Aug; 135(31):11461-4. PubMed ID: 23865741
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reduced charge recombination in a co-sensitized quantum dot solar cell with two different sizes of CdSe quantum dot.
    Chen J; Lei W; Deng WQ
    Nanoscale; 2011 Feb; 3(2):674-7. PubMed ID: 21132215
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recombination control in high-performance quantum dot-sensitized solar cells with a novel TiO2/ZnS/CdS/ZnS heterostructure.
    Lee YS; Gopi CV; Venkata-Haritha M; Kim HJ
    Dalton Trans; 2016 Aug; 45(32):12914-23. PubMed ID: 27477125
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient quantum dot-sensitized solar cells through sulfur-rich carbon nitride modified electrolytes.
    Rasal AS; Dehvari K; Getachew G; Korupalli C; Ghule AV; Chang JY
    Nanoscale; 2021 Mar; 13(11):5730-5743. PubMed ID: 33725063
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of injection and recombination in quantum dot sensitized solar cells.
    Barea EM; Shalom M; Giménez S; Hod I; Mora-Seró I; Zaban A; Bisquert J
    J Am Chem Soc; 2010 May; 132(19):6834-9. PubMed ID: 20423152
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Zn-doped nanocrystalline TiO2 films for CdS quantum dot sensitized solar cells.
    Zhu G; Cheng Z; Lv T; Pan L; Zhao Q; Sun Z
    Nanoscale; 2010 Jul; 2(7):1229-32. PubMed ID: 20648354
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Charge Recombination Control for High Efficiency Quantum Dot Sensitized Solar Cells.
    Zhao K; Pan Z; Zhong X
    J Phys Chem Lett; 2016 Feb; 7(3):406-17. PubMed ID: 26758605
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved photovoltaic performance and stability of quantum dot sensitized solar cells using Mn-ZnSe shell structure with enhanced light absorption and recombination control.
    Gopi CV; Venkata-Haritha M; Kim SK; Kim HJ
    Nanoscale; 2015 Aug; 7(29):12552-63. PubMed ID: 26140442
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum dot-sensitized solar cells incorporating nanomaterials.
    Yang Z; Chen CY; Roy P; Chang HT
    Chem Commun (Camb); 2011 Sep; 47(34):9561-71. PubMed ID: 21637864
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Boosting the efficiency of quantum dot sensitized solar cells through modulation of interfacial charge transfer.
    Kamat PV
    Acc Chem Res; 2012 Nov; 45(11):1906-15. PubMed ID: 22493938
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synergistic effect of ZnS outer layers and electrolyte methanol content on efficiency in TiO2/CdS/CdSe sensitized solar cells.
    Zewdu T; Clifford JN; Palomares E
    Phys Chem Chem Phys; 2012 Oct; 14(37):13076-80. PubMed ID: 22898785
    [TBL] [Abstract][Full Text] [Related]  

  • 18. N-Ion-implanted TiO2 photoanodes in quantum dot-sensitized solar cells.
    Sudhagar P; Asokan K; Ito E; Kang YS
    Nanoscale; 2012 Apr; 4(7):2416-22. PubMed ID: 22371010
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Materials and interfaces in quantum dot sensitized solar cells: challenges, advances and prospects.
    Hod I; Zaban A
    Langmuir; 2014 Jul; 30(25):7264-73. PubMed ID: 24369734
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantum dot-sensitized solar cells based on directly adsorbed zinc copper indium sulfide colloids.
    Guijarro N; Guillén E; Lana-Villarreal T; Gómez R
    Phys Chem Chem Phys; 2014 May; 16(19):9115-22. PubMed ID: 24700258
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.