These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 23400281)

  • 21. A nanofluidic channel with embedded transverse nanoelectrodes.
    Maleki T; Mohammadi S; Ziaie B
    Nanotechnology; 2009 Mar; 20(10):105302. PubMed ID: 19417517
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Soft Surfaces for Fast Characterization and Positioning of Scanning Electrochemical Microscopy Nanoelectrode Tips.
    Gossage ZT; Simpson BH; Schorr NB; Rodríguez-López J
    Anal Chem; 2016 Oct; 88(20):9897-9901. PubMed ID: 27653997
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Droplet array on local redox cycling-based electrochemical (LRC-EC) chip device.
    Ino K; Goto T; Kanno Y; Inoue KY; Takahashi Y; Shiku H; Matsue T
    Lab Chip; 2014 Feb; 14(4):787-94. PubMed ID: 24356747
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biological imaging with scanning electrochemical microscopy.
    Conzuelo F; Schulte A; Schuhmann W
    Proc Math Phys Eng Sci; 2018 Oct; 474(2218):20180409. PubMed ID: 30839832
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Advances in the application of scanning electrochemical microscopy to bioanalytical systems.
    Roberts WS; Lonsdale DJ; Griffiths J; Higson SP
    Biosens Bioelectron; 2007 Oct; 23(3):301-18. PubMed ID: 17869090
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Recent advancements in nanoelectrodes and nanopipettes used in combined scanning electrochemical microscopy techniques.
    Kranz C
    Analyst; 2014 Jan; 139(2):336-52. PubMed ID: 24266018
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Recent advances in high resolution scanning electrochemical microscopy of living cells--a review.
    Bergner S; Vatsyayan P; Matysik FM
    Anal Chim Acta; 2013 May; 775():1-13. PubMed ID: 23601970
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nanoelectrodes integrated in atomic force microscopy cantilevers for imaging of in situ enzyme activity.
    Kueng A; Kranz C; Lugstein A; Bertagnolli E; Mizaikoff B
    Methods Mol Biol; 2005; 300():403-15. PubMed ID: 15657494
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Wafer scale interdigitated nanoelectrode devices functionalized using a MEMS-based deposition system.
    Martinez-Rivas A; Carcenac F; Saya D; Séverac C; Nicu L; Vieu C
    Nanotechnology; 2012 Mar; 23(10):105302. PubMed ID: 22361922
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Imaging of ATP membrane transport with dual micro-disk electrodes and scanning electrochemical microscopy.
    Kueng A; Kranz C; Mizaikoff B
    Biosens Bioelectron; 2005 Aug; 21(2):346-53. PubMed ID: 16023962
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ultramicroelectrode voltammetry and scanning electrochemical microscopy in room-temperature ionic liquid electrolytes.
    Walsh DA; Lovelock KR; Licence P
    Chem Soc Rev; 2010 Nov; 39(11):4185-94. PubMed ID: 20835469
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The fabrication of nanoelectrodes based on a single carbon nanotube.
    Shen J; Wang W; Chen Q; Wang M; Xu S; Zhou Y; Zhang XX
    Nanotechnology; 2009 Jun; 20(24):245307. PubMed ID: 19468163
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Numerical simulation of scanning electrochemical microscopy experiments with frame-shaped integrated atomic force microscopy--SECM probes using the boundary element method.
    Sklyar O; Kueng A; Kranz C; Mizaikoff B; Lugstein A; Bertagnolli E; Wittstock G
    Anal Chem; 2005 Feb; 77(3):764-71. PubMed ID: 15679342
    [TBL] [Abstract][Full Text] [Related]  

  • 34. New Frontiers and Challenges for Single-Cell Electrochemical Analysis.
    Zhang J; Zhou J; Pan R; Jiang D; Burgess JD; Chen HY
    ACS Sens; 2018 Feb; 3(2):242-250. PubMed ID: 29276834
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electrochemical atomic force microscopy using a tip-attached redox mediator for topographic and functional imaging of nanosystems.
    Anne A; Cambril E; Chovin A; Demaille C; Goyer C
    ACS Nano; 2009 Oct; 3(10):2927-40. PubMed ID: 19769340
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chemically imaging living cells by scanning electrochemical microscopy.
    Bard AJ; Li X; Zhan W
    Biosens Bioelectron; 2006 Oct; 22(4):461-72. PubMed ID: 16797958
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fabricating and imaging carbon-fiber immobilized enzyme ultramicroelectrodes with scanning electrochemical microscopy.
    Ge F; Tenent RC; Wipf DO
    Anal Sci; 2001 Jan; 17(1):27-35. PubMed ID: 11993673
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Newly developed chemical probes and nano-devices for cellular analysis.
    Honda A; Komatsu H; Kato D; Ueda A; Maruyama K; Iwasaki Y; Ito T; Niwa O; Suzuki K
    Anal Sci; 2008 Jan; 24(1):55-66. PubMed ID: 18187850
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Atomic force microscopy with nanoelectrode tips for high resolution electrochemical, nanoadhesion and nanoelectrical imaging.
    Nellist MR; Chen Y; Mark A; Gödrich S; Stelling C; Jiang J; Poddar R; Li C; Kumar R; Papastavrou G; Retsch M; Brunschwig BS; Huang Z; Xiang C; Boettcher SW
    Nanotechnology; 2017 Mar; 28(9):095711. PubMed ID: 28139467
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optimization of an electrochemical DNA assay by using a 48-electrode array and redox amplification studies by means of scanning electrochemical microscopy.
    Neugebauer S; Zimdars A; Liepold P; Gebala M; Schuhmann W; Hartwich G
    Chembiochem; 2009 May; 10(7):1193-9. PubMed ID: 19353601
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.