These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 23400350)
1. Alkaline conditions stimulate the production of 1,3-propanediol in Lactobacillus panis PM1 through shifting metabolic pathways. Grahame DA; Kang TS; Khan NH; Tanaka T World J Microbiol Biotechnol; 2013 Jul; 29(7):1207-15. PubMed ID: 23400350 [TBL] [Abstract][Full Text] [Related]
2. Glycerol and environmental factors: effects on 1,3-propanediol production and NAD(+) regeneration in Lactobacillus panis PM1. Kang TS; Korber DR; Tanaka T J Appl Microbiol; 2013 Oct; 115(4):1003-11. PubMed ID: 23795775 [TBL] [Abstract][Full Text] [Related]
3. Isolation and characterization of novel 1,3-propanediol-producing Lactobacillus panis PM1 from bioethanol thin stillage. Khan NH; Kang TS; Grahame DA; Haakensen MC; Ratanapariyanuch K; Reaney MJ; Korber DR; Tanaka T Appl Microbiol Biotechnol; 2013 Jan; 97(1):417-28. PubMed ID: 23076589 [TBL] [Abstract][Full Text] [Related]
4. Metabolic engineering of a glycerol-oxidative pathway in Lactobacillus panis PM1 for utilization of bioethanol thin stillage: potential to produce platform chemicals from glycerol. Kang TS; Korber DR; Tanaka T Appl Environ Microbiol; 2014 Dec; 80(24):7631-9. PubMed ID: 25281374 [TBL] [Abstract][Full Text] [Related]
5. Bioconversion of glycerol to 1,3-propanediol in thin stillage-based media by engineered Lactobacillus panis PM1. Kang TS; Korber DR; Tanaka T J Ind Microbiol Biotechnol; 2014 Apr; 41(4):629-35. PubMed ID: 24522935 [TBL] [Abstract][Full Text] [Related]
6. Transcriptional repressor role of PocR on the 1,3-propanediol biosynthetic pathway by Lactobacillus panis PM1. Kang TS; Korber DR; Tanaka T Biotechnol Lett; 2014 Jun; 36(6):1263-9. PubMed ID: 24563308 [TBL] [Abstract][Full Text] [Related]
7. Improvement of 1,3-propanediol production using an engineered cyanobacterium, Synechococcus elongatus by optimization of the gene expression level of a synthetic metabolic pathway and production conditions. Hirokawa Y; Maki Y; Hanai T Metab Eng; 2017 Jan; 39():192-199. PubMed ID: 27998670 [TBL] [Abstract][Full Text] [Related]
8. Glycerol assimilation and production of 1,3-propanediol by Citrobacter amalonaticus Y19. Ainala SK; Ashok S; Ko Y; Park S Appl Microbiol Biotechnol; 2013 Jun; 97(11):5001-11. PubMed ID: 23377788 [TBL] [Abstract][Full Text] [Related]
9. Monitoring steady production of 1,3-propanediol during bioprospecting of glycerol-assimilating soil microbiome using dye-based pH-stat method. Garg R; Baral P; Jain L; Kurmi AK; Agrawal D J Appl Microbiol; 2020 Feb; 128(2):491-499. PubMed ID: 31642142 [TBL] [Abstract][Full Text] [Related]
10. Enhancement of 1,3-propanediol production from industrial by-product by Lactobacillus reuteri CH53. Ju JH; Wang D; Heo SY; Kim MS; Seo JW; Kim YM; Kim DH; Kang SA; Kim CH; Oh BR Microb Cell Fact; 2020 Jan; 19(1):6. PubMed ID: 31931797 [TBL] [Abstract][Full Text] [Related]
11. Biological valorization of pure and crude glycerol into 1,3-propanediol using a novel isolate Lactobacillus brevis N1E9.3.3. Vivek N; Pandey A; Binod P Bioresour Technol; 2016 Aug; 213():222-230. PubMed ID: 26920628 [TBL] [Abstract][Full Text] [Related]
12. Lactobacillus reuteri growth and fermentation under high pressure towards the production of 1,3-propanediol. Mota MJ; Lopes RP; Sousa S; Gomes AM; Delgadillo I; Saraiva JA Food Res Int; 2018 Nov; 113():424-432. PubMed ID: 30195537 [TBL] [Abstract][Full Text] [Related]
13. Production of 1,3-propanediol from glycerol using the newly isolated Klebsiella pneumoniae J2B. Durgapal M; Kumar V; Yang TH; Lee HJ; Seung D; Park S Bioresour Technol; 2014 May; 159():223-31. PubMed ID: 24657752 [TBL] [Abstract][Full Text] [Related]
14. The pH effects on the distribution of 1,3-propanediol and 2,3-butanediol produced simultaneously by using an isolated indigenous Klebsiella sp. Ana-WS5. Yen HW; Li FT; Wong CL; Chang JS Bioprocess Biosyst Eng; 2014 Mar; 37(3):425-31. PubMed ID: 23852040 [TBL] [Abstract][Full Text] [Related]
15. Metabolic engineering of Lactobacillus reuteri DSM 20,016 for improved 1,3-propanediol production from glycerol. Singh K; Ainala SK; Park S Bioresour Technol; 2021 Oct; 338():125590. PubMed ID: 34298333 [TBL] [Abstract][Full Text] [Related]
16. Clostridium butyricum population balance model: Predicting dynamic metabolic flux distributions using an objective function related to extracellular glycerol content. Serrano-Bermúdez LM; González Barrios AF; Montoya D PLoS One; 2018; 13(12):e0209447. PubMed ID: 30571717 [TBL] [Abstract][Full Text] [Related]
17. Production of 1,3-propanediol by Clostridium butyricum growing on biodiesel-derived crude glycerol through a non-sterilized fermentation process. Chatzifragkou A; Papanikolaou S; Dietz D; Doulgeraki AI; Nychas GJ; Zeng AP Appl Microbiol Biotechnol; 2011 Jul; 91(1):101-12. PubMed ID: 21484206 [TBL] [Abstract][Full Text] [Related]
18. Effect of carbon pulsing on the redox household of Lactobacillus diolivorans in order to enhance 1,3-propanediol production. Lindlbauer KA; Marx H; Sauer M N Biotechnol; 2017 Jan; 34():32-39. PubMed ID: 27769866 [TBL] [Abstract][Full Text] [Related]
19. Isolation and characterization of a newly identified Clostridium butyricum strain SCUT343-4 for 1,3-propanediol production. Lan Y; Feng J; Guo X; Fu H; Wang J Bioprocess Biosyst Eng; 2021 Nov; 44(11):2375-2385. PubMed ID: 34231034 [TBL] [Abstract][Full Text] [Related]
20. 1,3-Propanediol production by new recombinant Escherichia coli containing genes from pathogenic bacteria. Przystałowska H; Zeyland J; Szymanowska-Powałowska D; Szalata M; Słomski R; Lipiński D Microbiol Res; 2015 Feb; 171():1-7. PubMed ID: 25644946 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]