BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 23400700)

  • 1. An improved synthesis of a fluorophosphonate-polyethylene glycol-biotin probe and its use against competitive substrates.
    Xu H; Sabit H; Amidon GL; Showalter HDH
    Beilstein J Org Chem; 2013; 9():89-96. PubMed ID: 23400700
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Profiling serine hydrolase activities in complex proteomes.
    Kidd D; Liu Y; Cravatt BF
    Biochemistry; 2001 Apr; 40(13):4005-15. PubMed ID: 11300781
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel quantification method for serine hydrolases in cellular expression system using fluorophosphonate-biotin probe.
    Abdel-Daim A; Ohura K; Imai T
    Eur J Pharm Sci; 2018 Mar; 114():267-274. PubMed ID: 29289670
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Resolution Confocal Fluorescence Imaging of Serine Hydrolase Activity in Cryosections - Application to Glioma Brain Unveils Activity Hotspots Originating from Tumor-Associated Neutrophils.
    Aaltonen N; Singha PK; Jakupović H; Wirth T; Samaranayake H; Pasonen-Seppänen S; Rilla K; Varjosalo M; Edgington-Mitchell LE; Kasperkiewicz P; Drag M; Kälvälä S; Moisio E; Savinainen JR; Laitinen JT
    Biol Proced Online; 2020; 22():6. PubMed ID: 32190011
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Short synthesis of a broadly Reactive, cell permeable serine hydrolase Fluorophosphonate-Alkyne probe.
    Konduri S; Schweer J; Siegel D
    Bioorg Med Chem Lett; 2023 Oct; 95():129434. PubMed ID: 37557924
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activity-based protein profiling: the serine hydrolases.
    Liu Y; Patricelli MP; Cravatt BF
    Proc Natl Acad Sci U S A; 1999 Dec; 96(26):14694-9. PubMed ID: 10611275
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Competitive ABPP of Serine Hydrolases: A Case Study on DAGL-Alpha.
    Baggelaar MP; Van der Stelt M
    Methods Mol Biol; 2017; 1491():161-169. PubMed ID: 27778288
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activity-Based Protein Profiling Probe for the Detection of Enzymes Catalyzing Polysorbate Degradation.
    Liu GY; Nie S; Zheng X; Li N
    Anal Chem; 2022 Jun; 94(24):8625-8632. PubMed ID: 35679579
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a Multiplexed Activity-Based Protein Profiling Assay to Evaluate Activity of Endocannabinoid Hydrolase Inhibitors.
    Janssen APA; van der Vliet D; Bakker AT; Jiang M; Grimm SH; Campiani G; Butini S; van der Stelt M
    ACS Chem Biol; 2018 Sep; 13(9):2406-2413. PubMed ID: 30199617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Qualitative analysis of the fluorophosphonate-based chemical probes using the serine hydrolases from mouse liver and poly-3-hydroxybutyrate depolymerase (PhaZ) from Bacillus thuringiensis.
    Huang YL; Chung TW; Chang CM; Chen CH; Liao CC; Tsay YG; Shaw GC; Liaw SH; Sun CM; Lin CH
    Anal Bioanal Chem; 2012 Nov; 404(8):2387-96. PubMed ID: 22941070
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activity-based Protein Profiling of Serine Hydrolase Superfamily Enzymes.
    Dolui AK; Latha M; Vijayaraj P
    Bio Protoc; 2022 Mar; 12(6):e4356. PubMed ID: 35434188
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Late-Stage Conversion of Diphenylphosphonate to Fluorophosphonate Probes for the Investigation of Serine Hydrolases.
    d'Andrea FB; Townsend CA
    Cell Chem Biol; 2019 Jun; 26(6):878-884.e8. PubMed ID: 30982751
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activity-based protein profiling of rice (Oryza sativa L.) bran serine hydrolases.
    Dolui AK; Vijayakumar AK; Rajasekharan R; Vijayaraj P
    Sci Rep; 2020 Sep; 10(1):15191. PubMed ID: 32938958
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved coating of pancreatic islets with regulatory T cells to create local immunosuppression by using the biotin-polyethylene glycol-succinimidyl valeric acid ester molecule.
    Gołąb K; Kizilel S; Bal T; Hara M; Zielinski M; Grose R; Savari O; Wang XJ; Wang LJ; Tibudan M; Krzystyniak A; Marek-Trzonkowska N; Millis JM; Trzonkowski P; Witkowski P
    Transplant Proc; 2014; 46(6):1967-71. PubMed ID: 25131084
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In-cell selectivity profiling of serine protease inhibitors by activity-based proteomics.
    Gillet LC; Namoto K; Ruchti A; Hoving S; Boesch D; Inverardi B; Mueller D; Coulot M; Schindler P; Schweigler P; Bernardi A; Gil-Parrado S
    Mol Cell Proteomics; 2008 Jul; 7(7):1241-53. PubMed ID: 18364346
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of palmitoyl protein thioesterase 1 in human THP1 monocytes and macrophages and characterization of unique biochemical activities for this enzyme.
    Wang R; Borazjani A; Matthews AT; Mangum LC; Edelmann MJ; Ross MK
    Biochemistry; 2013 Oct; 52(43):7559-74. PubMed ID: 24083319
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discovery of
    Porta EOJ; Isern JA; Kalesh K; Steel PG
    Front Pharmacol; 2022; 13():929493. PubMed ID: 35910377
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tandem orthogonal proteolysis-activity-based protein profiling (TOP-ABPP)--a general method for mapping sites of probe modification in proteomes.
    Weerapana E; Speers AE; Cravatt BF
    Nat Protoc; 2007; 2(6):1414-25. PubMed ID: 17545978
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional annotation of serine hydrolases in the asexual erythrocytic stage of Plasmodium falciparum.
    Elahi R; Ray WK; Dapper C; Dalal S; Helm RF; Klemba M
    Sci Rep; 2019 Nov; 9(1):17532. PubMed ID: 31772212
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorophosphonates on-Demand: A General and Simplified Approach toward Fluorophosphonate Synthesis.
    Dutra JK; Foley TL; Huang Z; Fisher EL; Lachapelle EA; Mahapatra S; Ogilvie K; Butler TW; Bellenger J; Devraj Majmudar J; Am Ende CW
    Chembiochem; 2021 May; 22(10):1769-1774. PubMed ID: 33491295
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.