BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 23400717)

  • 1. Frozen-state storage stability of a monoclonal antibody: aggregation is impacted by freezing rate and solute distribution.
    Miller MA; Rodrigues MA; Glass MA; Singh SK; Johnston KP; Maynard JA
    J Pharm Sci; 2013 Apr; 102(4):1194-208. PubMed ID: 23400717
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of freezing rate and dendritic ice formation on concentration profiles of proteins frozen in cylindrical vessels.
    Rodrigues MA; Miller MA; Glass MA; Singh SK; Johnston KP
    J Pharm Sci; 2011 Apr; 100(4):1316-29. PubMed ID: 24081467
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of cryoprotection by extracellular polymeric solutes.
    Takahashi T; Hirsh A; Erbe E; Williams RJ
    Biophys J; 1988 Sep; 54(3):509-18. PubMed ID: 2462928
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Frozen state storage instability of a monoclonal antibody: aggregation as a consequence of trehalose crystallization and protein unfolding.
    Singh SK; Kolhe P; Mehta AP; Chico SC; Lary AL; Huang M
    Pharm Res; 2011 Apr; 28(4):873-85. PubMed ID: 21213025
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of solute miscibility on the micro- and macroscopic structural integrity of freeze-dried solids.
    Izutsu K; Fujii K; Katori C; Yomota C; Kawanishi T; Yoshihashi Y; Yonemochi E; Terada K
    J Pharm Sci; 2010 Nov; 99(11):4710-9. PubMed ID: 20845467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of PEG crystallization in frozen PEG-sucrose-water solutions. I. Characterization of the nonequilibrium behavior during freeze-thawing.
    Bhatnagar BS; Martin SM; Teagarden DL; Shalaev EY; Suryanarayanan R
    J Pharm Sci; 2010 Jun; 99(6):2609-19. PubMed ID: 20091827
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein Aggregation in Frozen Trehalose Formulations: Effects of Composition, Cooling Rate, and Storage Temperature.
    Connolly BD; Le L; Patapoff TW; Cromwell MEM; Moore JMR; Lam P
    J Pharm Sci; 2015 Dec; 104(12):4170-4184. PubMed ID: 26398200
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of freezing on pH of buffered solutions and consequences for monoclonal antibody aggregation.
    Kolhe P; Amend E; Singh SK
    Biotechnol Prog; 2010; 26(3):727-33. PubMed ID: 20039442
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein and solute distribution in drug substance containers during frozen storage and post-thawing: a tool to understand and define freezing-thawing parameters in biotechnology process development.
    Kolhe P; Badkar A
    Biotechnol Prog; 2011; 27(2):494-504. PubMed ID: 21302371
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distribution of Protein Content and Number of Aggregates in Monoclonal Antibody Formulation After Large-Scale Freezing.
    Hauptmann A; Hoelzl G; Loerting T
    AAPS PharmSciTech; 2019 Jan; 20(2):72. PubMed ID: 30631964
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Partially crystalline systems in lyophilization: II. Withstanding collapse at high primary drying temperatures and impact on protein activity recovery.
    Chatterjee K; Shalaev EY; Suryanarayanan R
    J Pharm Sci; 2005 Apr; 94(4):809-20. PubMed ID: 15729705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conformational implications of an inversed pH-dependent antibody aggregation.
    Perico N; Purtell J; Dillon TM; Ricci MS
    J Pharm Sci; 2009 Sep; 98(9):3031-42. PubMed ID: 18803243
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Nondestructive Method for Measuring Protein Distribution in Frozen Drug Substance.
    Du C; Borwankar A; Singh N; Borys M; Li ZJ
    J Pharm Sci; 2017 Aug; 106(8):1978-1986. PubMed ID: 28483421
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measuring and modeling hemoglobin aggregation below the freezing temperature.
    Rosa M; Lopes C; Melo EP; Singh SK; Geraldes V; Rodrigues MA
    J Phys Chem B; 2013 Aug; 117(30):8939-46. PubMed ID: 23808610
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Systematic investigation of the effect of lyophilizate collapse on pharmaceutically relevant proteins, part 2: stability during storage at elevated temperatures.
    Schersch K; Betz O; Garidel P; Muehlau S; Bassarab S; Winter G
    J Pharm Sci; 2012 Jul; 101(7):2288-306. PubMed ID: 22517663
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrasonic rheology of a monoclonal antibody (IgG2) solution: implications for physical stability of proteins in high concentration formulations.
    Saluja A; Badkar AV; Zeng DL; Kalonia DS
    J Pharm Sci; 2007 Dec; 96(12):3181-95. PubMed ID: 17588261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cryopreservation of germinal vesicle stage porcine oocytes based on intracellular ice formation assessment.
    Yang CY; Chen MC; Lee PT; Lin TT
    Cryo Letters; 2012; 33(5):349-62. PubMed ID: 23224368
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the sucrose/glycine/water system by differential scanning calorimetry and freeze-drying microscopy.
    Kasraian K; Spitznagel TM; Juneau JA; Yim K
    Pharm Dev Technol; 1998 May; 3(2):233-9. PubMed ID: 9653761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of temperature at which slow cooling is terminated and of thawing rate on the survival of one-cell mouse embryos frozen in dimethyl sulfoxide or 1,2-propanediol solutions.
    Van den Abbeel E; Van der Elst J; Van Steirteghem AC
    Cryobiology; 1994 Oct; 31(5):423-33. PubMed ID: 7988151
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The ReFOLD assay for protein formulation studies and prediction of protein aggregation during long-term storage.
    Svilenov H; Winter G
    Eur J Pharm Biopharm; 2019 Apr; 137():131-139. PubMed ID: 30818009
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.