These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 23401376)

  • 1. Ultraviolet irradiation-controlled memory effect in graphene field-effect transistors.
    Meng J; Wu HC; Chen JJ; Lin F; Bie YQ; Shvets IV; Yu DP; Liao ZM
    Small; 2013 Jul; 9(13):2240-4. PubMed ID: 23401376
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hysteresis of electronic transport in graphene transistors.
    Wang H; Wu Y; Cong C; Shang J; Yu T
    ACS Nano; 2010 Dec; 4(12):7221-8. PubMed ID: 21047068
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Charge transfer and partial pinning at the contacts as the origin of a double dip in the transfer characteristics of graphene-based field-effect transistors.
    Di Bartolomeo A; Giubileo F; Santandrea S; Romeo F; Citro R; Schroeder T; Lupina G
    Nanotechnology; 2011 Jul; 22(27):275702. PubMed ID: 21597135
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intrinsic doping and gate hysteresis in graphene field effect devices fabricated on SiO2 substrates.
    Joshi P; Romero HE; Neal AT; Toutam VK; Tadigadapa SA
    J Phys Condens Matter; 2010 Aug; 22(33):334214. PubMed ID: 21386504
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoelectrical response in single-layer graphene transistors.
    Shi Y; Fang W; Zhang K; Zhang W; Li LJ
    Small; 2009 Sep; 5(17):2005-11. PubMed ID: 19492352
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modification of graphene/SiO2 interface by UV-irradiation: effect on electrical characteristics.
    Imamura G; Saiki K
    ACS Appl Mater Interfaces; 2015 Feb; 7(4):2439-43. PubMed ID: 25569142
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Substrate engineering by hexagonal boron nitride/SiO2 for hysteresis-free graphene FETs and large-scale graphene p-n junctions.
    Xu H; Wu J; Chen Y; Zhang H; Zhang J
    Chem Asian J; 2013 Oct; 8(10):2446-52. PubMed ID: 23840025
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved Memory Properties of Graphene Oxide-Based Organic Memory Transistors.
    Al-Shawi A; Alias M; Sayers P; Mabrook MF
    Micromachines (Basel); 2019 Sep; 10(10):. PubMed ID: 31557870
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulating the charge-transfer enhancement in GERS using an electrical field under vacuum and an n/p-doping atmosphere.
    Xu H; Chen Y; Xu W; Zhang H; Kong J; Dresselhaus MS; Zhang J
    Small; 2011 Oct; 7(20):2945-52. PubMed ID: 21901822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transfer characteristics and contact resistance in Ni- and Ti-contacted graphene-based field-effect transistors.
    Di Bartolomeo A; Giubileo F; Iemmo L; Romeo F; Santandrea S; Gambardella U
    J Phys Condens Matter; 2013 Apr; 25(15):155303. PubMed ID: 23528822
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding surfactant/graphene interactions using a graphene field effect transistor: relating molecular structure to hysteresis and carrier mobility.
    Shih CJ; Paulus GL; Wang QH; Jin Z; Blankschtein D; Strano MS
    Langmuir; 2012 Jun; 28(22):8579-86. PubMed ID: 22587527
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Focused-laser-enabled p-n junctions in graphene field-effect transistors.
    Kim YD; Bae MH; Seo JT; Kim YS; Kim H; Lee JH; Ahn JR; Lee SW; Chun SH; Park YD
    ACS Nano; 2013 Jul; 7(7):5850-7. PubMed ID: 23782162
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Persistent hysteresis in graphene-mica van der Waals heterostructures.
    Mohrmann J; Watanabe K; Taniguchi T; Danneau R
    Nanotechnology; 2015 Jan; 26(1):015202. PubMed ID: 25483818
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigating the mechanism of hysteresis effect in graphene electrical field device fabricated on SiO₂ substrates using Raman spectroscopy.
    Xu H; Chen Y; Zhang J; Zhang H
    Small; 2012 Sep; 8(18):2833-40. PubMed ID: 22678822
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrical and noise characteristics of graphene field-effect transistors: ambient effects, noise sources and physical mechanisms.
    Rumyantsev S; Liu G; Stillman W; Shur M; Balandin AA
    J Phys Condens Matter; 2010 Oct; 22(39):395302. PubMed ID: 21403224
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detangling extrinsic and intrinsic hysteresis for detecting dynamic switch of electric dipoles using graphene field-effect transistors on ferroelectric gates.
    Ma C; Gong Y; Lu R; Brown E; Ma B; Li J; Wu J
    Nanoscale; 2015 Nov; 7(44):18489-97. PubMed ID: 26331952
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hysteresis in graphene nanoribbon field-effect devices.
    Tries A; Richter N; Chen Z; Narita A; Müllen K; Wang HI; Bonn M; Kläui M
    Phys Chem Chem Phys; 2020 Mar; 22(10):5667-5672. PubMed ID: 32103224
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photoconductivity and enhanced memory effects in hybrid C60-graphene transistors.
    Jeon EK; Yang CS; Shen Y; Nakanishi T; Jeong DS; Kim JJ; Ahn KS; Kong KJ; Lee JO
    Nanotechnology; 2012 Nov; 23(45):455202. PubMed ID: 23085620
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Top-gated graphene field-effect transistors with high normalized transconductance and designable dirac point voltage.
    Xu H; Zhang Z; Xu H; Wang Z; Wang S; Peng LM
    ACS Nano; 2011 Jun; 5(6):5031-7. PubMed ID: 21528892
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The intrinsic origin of hysteresis in MoS2 field effect transistors.
    Shu J; Wu G; Guo Y; Liu B; Wei X; Chen Q
    Nanoscale; 2016 Feb; 8(5):3049-56. PubMed ID: 26782750
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.