These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

515 related articles for article (PubMed ID: 23401421)

  • 1. SIKVAV-modified highly superporous PHEMA scaffolds with oriented pores for spinal cord injury repair.
    Kubinová Š; Horák D; Hejčl A; Plichta Z; Kotek J; Proks V; Forostyak S; Syková E
    J Tissue Eng Regen Med; 2015 Nov; 9(11):1298-309. PubMed ID: 23401421
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics of tissue ingrowth in SIKVAV-modified highly superporous PHEMA scaffolds with oriented pores after bridging a spinal cord transection.
    Hejčl A; Růžička J; Proks V; Macková H; Kubinová Š; Tukmachev D; Cihlář J; Horák D; Jendelová P
    J Mater Sci Mater Med; 2018 Jun; 29(7):89. PubMed ID: 29938301
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly superporous cholesterol-modified poly(2-hydroxyethyl methacrylate) scaffolds for spinal cord injury repair.
    Kubinová S; Horák D; Hejčl A; Plichta Z; Kotek J; Syková E
    J Biomed Mater Res A; 2011 Dec; 99(4):618-29. PubMed ID: 21953978
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel scaffolds based on poly(2-hydroxyethyl methacrylate) superporous hydrogels for bone tissue engineering.
    Çetin D; Kahraman AS; Gümüşderelioğlu M
    J Biomater Sci Polym Ed; 2011; 22(9):1157-78. PubMed ID: 20615330
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Matrix inclusion within synthetic hydrogel guidance channels improves specific supraspinal and local axonal regeneration after complete spinal cord transection.
    Tsai EC; Dalton PD; Shoichet MS; Tator CH
    Biomaterials; 2006 Jan; 27(3):519-33. PubMed ID: 16099035
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The use of new surface-modified poly(2-hydroxyethyl methacrylate) hydrogels in tissue engineering: treatment of the surface with fibronectin subunits versus Ac-CGGASIKVAVS-OH, cysteine, and 2-mercaptoethanol modification.
    Kubinová Š; Horák D; Vaněček V; Plichta Z; Proks V; Syková E
    J Biomed Mater Res A; 2014 Jul; 102(7):2315-23. PubMed ID: 23946247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanically engineered hydrogel scaffolds for axonal growth and angiogenesis after transplantation in spinal cord injury.
    Bakshi A; Fisher O; Dagci T; Himes BT; Fischer I; Lowman A
    J Neurosurg Spine; 2004 Oct; 1(3):322-9. PubMed ID: 15478371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adjusting the chemical and physical properties of hydrogels leads to improved stem cell survival and tissue ingrowth in spinal cord injury reconstruction: a comparative study of four methacrylate hydrogels.
    Hejčl A; Růžička J; Kapcalová M; Turnovcová K; Krumbholcová E; Přádný M; Michálek J; Cihlář J; Jendelová P; Syková E
    Stem Cells Dev; 2013 Oct; 22(20):2794-805. PubMed ID: 23750454
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acute and delayed implantation of positively charged 2-hydroxyethyl methacrylate scaffolds in spinal cord injury in the rat.
    Hejcl A; Urdzikova L; Sedy J; Lesny P; Pradny M; Michalek J; Burian M; Hajek M; Zamecnik J; Jendelova P; Sykova E
    J Neurosurg Spine; 2008 Jan; 8(1):67-73. PubMed ID: 18173349
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cholesterol-modified superporous poly(2-hydroxyethyl methacrylate) scaffolds for tissue engineering.
    Kubinová S; Horák D; Syková E
    Biomaterials; 2009 Sep; 30(27):4601-9. PubMed ID: 19500833
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthetic hydrogel guidance channels facilitate regeneration of adult rat brainstem motor axons after complete spinal cord transection.
    Tsai EC; Dalton PD; Shoichet MS; Tator CH
    J Neurotrauma; 2004 Jun; 21(6):789-804. PubMed ID: 15253805
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomimetic macroporous hydrogels: protein ligand distribution and cell response to the ligand architecture in the scaffold.
    Savina IN; Dainiak M; Jungvid H; Mikhalovsky SV; Galaev IY
    J Biomater Sci Polym Ed; 2009; 20(12):1781-95. PubMed ID: 19723441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modified Methacrylate Hydrogels Improve Tissue Repair after Spinal Cord Injury.
    Hejčl A; Růžička J; Kekulová K; Svobodová B; Proks V; Macková H; Jiránková K; Kárová K; Machová Urdziková L; Kubinová Š; Cihlář J; Horák D; Jendelová P
    Int J Mol Sci; 2018 Aug; 19(9):. PubMed ID: 30131482
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complete spinal cord transection treated by implantation of a reinforced synthetic hydrogel channel results in syringomyelia and caudal migration of the rostral stump.
    Nomura H; Katayama Y; Shoichet MS; Tator CH
    Neurosurgery; 2006 Jul; 59(1):183-92; discussion 183-92. PubMed ID: 16823315
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biocompatible hydrogels in spinal cord injury repair.
    Hejcl A; Lesný P; Prádný M; Michálek J; Jendelová P; Stulík J; Syková E
    Physiol Res; 2008; 57 Suppl 3():S121-S132. PubMed ID: 18481908
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fiber templating of poly(2-hydroxyethyl methacrylate) for neural tissue engineering.
    Flynn L; Dalton PD; Shoichet MS
    Biomaterials; 2003 Oct; 24(23):4265-72. PubMed ID: 12853258
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The use of superporous Ac-CGGASIKVAVS-OH-modified PHEMA scaffolds to promote cell adhesion and the differentiation of human fetal neural precursors.
    Kubinová S; Horák D; Kozubenko N; Vanecek V; Proks V; Price J; Cocks G; Syková E
    Biomaterials; 2010 Aug; 31(23):5966-75. PubMed ID: 20483453
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomimetic modification of dual porosity poly(2-hydroxyethyl methacrylate) hydrogel scaffolds-porosity and stem cell growth evaluation.
    Janoušková O; Přádný M; Vetrík M; Chylíková Krumbholcová E; Michálek J; Dušková Smrčková M
    Biomed Mater; 2019 Jul; 14(5):055004. PubMed ID: 31181551
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Repair of the injured spinal cord by implantation of a synthetic degradable block copolymer in rat.
    Pertici V; Trimaille T; Laurin J; Felix MS; Marqueste T; Pettmann B; Chauvin JP; Gigmes D; Decherchi P
    Biomaterials; 2014 Aug; 35(24):6248-58. PubMed ID: 24814425
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Injectable hydroxyphenyl derivative of hyaluronic acid hydrogel modified with RGD as scaffold for spinal cord injury repair.
    Zaviskova K; Tukmachev D; Dubisova J; Vackova I; Hejcl A; Bystronova J; Pravda M; Scigalkova I; Sulakova R; Velebny V; Wolfova L; Kubinova S
    J Biomed Mater Res A; 2018 Apr; 106(4):1129-1140. PubMed ID: 29266693
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.