BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 23401571)

  • 1. Voltage-sensor movements describe slow inactivation of voltage-gated sodium channels I: wild-type skeletal muscle Na(V)1.4.
    Silva JR; Goldstein SA
    J Gen Physiol; 2013 Mar; 141(3):309-21. PubMed ID: 23401571
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Voltage-sensor movements describe slow inactivation of voltage-gated sodium channels II: a periodic paralysis mutation in Na(V)1.4 (L689I).
    Silva JR; Goldstein SA
    J Gen Physiol; 2013 Mar; 141(3):323-34. PubMed ID: 23401572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Negative charges in the DIII-DIV linker of human skeletal muscle Na+ channels regulate deactivation gating.
    Groome JR; Fujimoto E; Ruben PC
    J Physiol; 2003 Apr; 548(Pt 1):85-96. PubMed ID: 12588896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gating pore currents and the resting state of Nav1.4 voltage sensor domains.
    Gosselin-Badaroudine P; Delemotte L; Moreau A; Klein ML; Chahine M
    Proc Natl Acad Sci U S A; 2012 Nov; 109(47):19250-5. PubMed ID: 23134726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Action potentials in Xenopus oocytes triggered by blue light.
    Walther F; Feind D; Vom Dahl C; Müller CE; Kukaj T; Sattler C; Nagel G; Gao S; Zimmer T
    J Gen Physiol; 2020 May; 152(5):. PubMed ID: 32211871
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactions among DIV voltage-sensor movement, fast inactivation, and resurgent Na current induced by the NaVβ4 open-channel blocking peptide.
    Lewis AH; Raman IM
    J Gen Physiol; 2013 Sep; 142(3):191-206. PubMed ID: 23940261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Channel activation voltage alone is directly altered in an isoform-specific manner by Na(v1.4) and Na(v1.5) cytoplasmic linkers.
    Bennett ES
    J Membr Biol; 2004 Feb; 197(3):155-68. PubMed ID: 15042347
    [TBL] [Abstract][Full Text] [Related]  

  • 8. External pore residue mediates slow inactivation in mu 1 rat skeletal muscle sodium channels.
    Balser JR; Nuss HB; Chiamvimonvat N; Pérez-García MT; Marban E; Tomaselli GF
    J Physiol; 1996 Jul; 494 ( Pt 2)(Pt 2):431-42. PubMed ID: 8842002
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of Na
    Hsu EJ; Zhu W; Schubert AR; Voelker T; Varga Z; Silva JR
    J Gen Physiol; 2017 Mar; 149(3):389-403. PubMed ID: 28232510
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isoform-specific lidocaine block of sodium channels explained by differences in gating.
    Nuss HB; Kambouris NG; Marbán E; Tomaselli GF; Balser JR
    Biophys J; 2000 Jan; 78(1):200-10. PubMed ID: 10620286
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of slow inactivation in human heart and rat skeletal muscle Na+ channel chimaeras.
    O'Reilly JP; Wang SY; Kallen RG; Wang GK
    J Physiol; 1999 Feb; 515 ( Pt 1)(Pt 1):61-73. PubMed ID: 9925878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Charge immobilization of the voltage sensor in domain IV is independent of sodium current inactivation.
    Sheets MF; Hanck DA
    J Physiol; 2005 Feb; 563(Pt 1):83-93. PubMed ID: 15576449
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gating-pore currents demonstrate selective and specific modulation of individual sodium channel voltage-sensors by biological toxins.
    Xiao Y; Blumenthal K; Cummins TR
    Mol Pharmacol; 2014 Aug; 86(2):159-67. PubMed ID: 24898004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Blocking effect of methylflavonolamine on human Na(V)1.5 channels expressed in Xenopus laevis oocytes and on sodium currents in rabbit ventricular myocytes.
    Fan XR; Ma JH; Zhang PH; Xing JL
    Acta Pharmacol Sin; 2010 Mar; 31(3):297-306. PubMed ID: 20173760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The TTX metabolite 4,9-anhydro-TTX is a highly specific blocker of the Na(v1.6) voltage-dependent sodium channel.
    Rosker C; Lohberger B; Hofer D; Steinecker B; Quasthoff S; Schreibmayer W
    Am J Physiol Cell Physiol; 2007 Aug; 293(2):C783-9. PubMed ID: 17522141
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tracking voltage-dependent conformational changes in skeletal muscle sodium channel during activation.
    Chanda B; Bezanilla F
    J Gen Physiol; 2002 Nov; 120(5):629-45. PubMed ID: 12407076
    [TBL] [Abstract][Full Text] [Related]  

  • 17. State- and use-dependent block of muscle Nav1.4 and neuronal Nav1.7 voltage-gated Na+ channel isoforms by ranolazine.
    Wang GK; Calderon J; Wang SY
    Mol Pharmacol; 2008 Mar; 73(3):940-8. PubMed ID: 18079277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Closed- and open-state models of human skeletal muscle sodium channel.
    Fernandes JRC; Bleicher L; Beirão PSL
    Biochem Biophys Res Commun; 2018 Dec; 506(4):826-832. PubMed ID: 30389137
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Movement of voltage sensor S4 in domain 4 is tightly coupled to sodium channel fast inactivation and gating charge immobilization.
    Kühn FJ; Greeff NG
    J Gen Physiol; 1999 Aug; 114(2):167-83. PubMed ID: 10435996
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scorpion β-toxin interference with NaV channel voltage sensor gives rise to excitatory and depressant modes.
    Leipold E; Borges A; Heinemann SH
    J Gen Physiol; 2012 Apr; 139(4):305-19. PubMed ID: 22450487
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.