These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 23401571)

  • 41. Subunit dependence of Na channel slow inactivation and open channel block in cerebellar neurons.
    Aman TK; Raman IM
    Biophys J; 2007 Mar; 92(6):1938-51. PubMed ID: 17189307
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Enhanced slow inactivation of the human skeletal muscle sodium channel causing normokalemic periodic paralysis.
    Wu L; Zhang B; Kang Y; Wu W
    Cell Mol Neurobiol; 2014 Jul; 34(5):707-14. PubMed ID: 24682880
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Proton sensors in the pore domain of the cardiac voltage-gated sodium channel.
    Jones DK; Peters CH; Allard CR; Claydon TW; Ruben PC
    J Biol Chem; 2013 Feb; 288(7):4782-91. PubMed ID: 23283979
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Speeding the recovery from ultraslow inactivation of voltage-gated Na+ channels by metal ion binding to the selectivity filter: a foot-on-the-door?
    Szendroedi J; Sandtner W; Zarrabi T; Zebedin E; Hilber K; Dudley SC; Fozzard HA; Todt H
    Biophys J; 2007 Dec; 93(12):4209-24. PubMed ID: 17720727
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Relative resistance to slow inactivation of human cardiac Na+ channel hNav1.5 is reversed by lysine or glutamine substitution at V930 in D2-S6.
    Chancey JH; Shockett PE; O'Reilly JP
    Am J Physiol Cell Physiol; 2007 Dec; 293(6):C1895-905. PubMed ID: 17928536
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Nav1.4 deregulation in dystrophic skeletal muscle leads to Na+ overload and enhanced cell death.
    Hirn C; Shapovalov G; Petermann O; Roulet E; Ruegg UT
    J Gen Physiol; 2008 Aug; 132(2):199-208. PubMed ID: 18625851
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Role of outer ring carboxylates of the rat skeletal muscle sodium channel pore in proton block.
    Khan A; Romantseva L; Lam A; Lipkind G; Fozzard HA
    J Physiol; 2002 Aug; 543(Pt 1):71-84. PubMed ID: 12181282
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Modulation of Nav1.5 channel function by an alternatively spliced sequence in the DII/DIII linker region.
    Camacho JA; Hensellek S; Rougier JS; Blechschmidt S; Abriel H; Benndorf K; Zimmer T
    J Biol Chem; 2006 Apr; 281(14):9498-506. PubMed ID: 16469732
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Gating control of the cardiac sodium channel Nav1.5 by its β3-subunit involves distinct roles for a transmembrane glutamic acid and the extracellular domain.
    Salvage SC; Zhu W; Habib ZF; Hwang SS; Irons JR; Huang CLH; Silva JR; Jackson AP
    J Biol Chem; 2019 Dec; 294(51):19752-19763. PubMed ID: 31659116
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Residue-specific effects on slow inactivation at V787 in D2-S6 of Na(v)1.4 sodium channels.
    O'Reilly JP; Wang SY; Wang GK
    Biophys J; 2001 Oct; 81(4):2100-11. PubMed ID: 11566781
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Two mutations in the IV/S4-S5 segment of the human skeletal muscle Na+ channel disrupt fast and enhance slow inactivation.
    Alekov AK; Peter W; Mitrovic N; Lehmann-Horn F; Lerche H
    Neurosci Lett; 2001 Jun; 306(3):173-6. PubMed ID: 11406323
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Role of charged residues in the S1-S4 voltage sensor of BK channels.
    Ma Z; Lou XJ; Horrigan FT
    J Gen Physiol; 2006 Mar; 127(3):309-28. PubMed ID: 16505150
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Asymmetric functional contributions of acidic and aromatic side chains in sodium channel voltage-sensor domains.
    Pless SA; Elstone FD; Niciforovic AP; Galpin JD; Yang R; Kurata HT; Ahern CA
    J Gen Physiol; 2014 May; 143(5):645-56. PubMed ID: 24778431
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Gating properties of a sodium channel with three arginines substituted by histidines in the central part of voltage sensor S4D4.
    Kühn FJ; Greeff NG
    J Membr Biol; 2003 May; 193(1):23-34. PubMed ID: 12879163
    [TBL] [Abstract][Full Text] [Related]  

  • 55. beta-Scorpion toxin modifies gating transitions in all four voltage sensors of the sodium channel.
    Campos FV; Chanda B; Beirão PS; Bezanilla F
    J Gen Physiol; 2007 Sep; 130(3):257-68. PubMed ID: 17698594
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Outward stabilization of the voltage sensor in domain II but not domain I speeds inactivation of voltage-gated sodium channels.
    Sheets MF; Chen T; Hanck DA
    Am J Physiol Heart Circ Physiol; 2013 Oct; 305(8):H1213-21. PubMed ID: 23893162
    [TBL] [Abstract][Full Text] [Related]  

  • 57. An epilepsy mutation in the sodium channel SCN1A that decreases channel excitability.
    Barela AJ; Waddy SP; Lickfett JG; Hunter J; Anido A; Helmers SL; Goldin AL; Escayg A
    J Neurosci; 2006 Mar; 26(10):2714-23. PubMed ID: 16525050
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Fiber type conversion alters inactivation of voltage-dependent sodium currents in murine C2C12 skeletal muscle cells.
    Zebedin E; Sandtner W; Galler S; Szendroedi J; Just H; Todt H; Hilber K
    Am J Physiol Cell Physiol; 2004 Aug; 287(2):C270-80. PubMed ID: 15044148
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Resting potential-dependent regulation of the voltage sensitivity of sodium channel gating in rat skeletal muscle in vivo.
    Filatov GN; Pinter MJ; Rich MM
    J Gen Physiol; 2005 Aug; 126(2):161-72. PubMed ID: 16043776
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Coupling between charge movement and pore opening in voltage dependent potassium channels.
    Stefani E
    Medicina (B Aires); 1995; 55(5 Pt 2):591-9. PubMed ID: 8842189
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.