BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 23401574)

  • 1. Potentiation in mouse lumbrical muscle without myosin light chain phosphorylation: is resting calcium responsible?
    Smith IC; Gittings W; Huang J; McMillan EM; Quadrilatero J; Tupling AR; Vandenboom R
    J Gen Physiol; 2013 Mar; 141(3):297-308. PubMed ID: 23401574
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced skeletal muscle contraction with myosin light chain phosphorylation by a calmodulin-sensing kinase.
    Ryder JW; Lau KS; Kamm KE; Stull JT
    J Biol Chem; 2007 Jul; 282(28):20447-54. PubMed ID: 17504755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Juxtaposition of the changes in intracellular calcium and force during staircase potentiation at 30 and 37°C.
    Smith IC; Vandenboom R; Tupling AR
    J Gen Physiol; 2014 Dec; 144(6):561-70. PubMed ID: 25422504
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Myosin light-chain phosphorylation and potentiation of dynamic function in mouse fast muscle.
    Xeni J; Gittings WB; Caterini D; Huang J; Houston ME; Grange RW; Vandenboom R
    Pflugers Arch; 2011 Aug; 462(2):349-58. PubMed ID: 21499697
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Epinephrine augments posttetanic potentiation in mouse skeletal muscle with and without myosin phosphorylation.
    Morris SR; Gittings W; Vandenboom R
    Physiol Rep; 2018 May; 6(9):e13690. PubMed ID: 29718592
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Myosin phosphorylation improves contractile economy of mouse fast skeletal muscle during staircase potentiation.
    Bunda J; Gittings W; Vandenboom R
    J Exp Biol; 2018 Jan; 221(Pt 2):. PubMed ID: 29361581
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of skeletal myosin light chain kinase gene ablation on the fatigability of mouse fast muscle.
    Gittings W; Huang J; Smith IC; Quadrilatero J; Vandenboom R
    J Muscle Res Cell Motil; 2011 Mar; 31(5-6):337-48. PubMed ID: 21298329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tetanic force potentiation of mouse fast muscle is shortening speed dependent.
    Gittings W; Huang J; Vandenboom R
    J Muscle Res Cell Motil; 2012 Oct; 33(5):359-68. PubMed ID: 23054096
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potentiation of force by extracellular potassium and posttetanic potentiation are additive in mouse fast-twitch muscle in vitro.
    Overgaard K; Gittings W; Vandenboom R
    Pflugers Arch; 2022 Jun; 474(6):637-646. PubMed ID: 35266019
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Myosin light chain phosphorylation is required for peak power output of mouse fast skeletal muscle in vitro.
    Bowslaugh J; Gittings W; Vandenboom R
    Pflugers Arch; 2016 Nov; 468(11-12):2007-2016. PubMed ID: 27896430
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Myosin light chain kinase and myosin phosphorylation effect frequency-dependent potentiation of skeletal muscle contraction.
    Zhi G; Ryder JW; Huang J; Ding P; Chen Y; Zhao Y; Kamm KE; Stull JT
    Proc Natl Acad Sci U S A; 2005 Nov; 102(48):17519-24. PubMed ID: 16299103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Myosin phosphorylation and force potentiation in skeletal muscle: evidence from animal models.
    Vandenboom R; Gittings W; Smith IC; Grange RW; Stull JT
    J Muscle Res Cell Motil; 2013 Dec; 34(5-6):317-32. PubMed ID: 24162313
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Myosin light chain kinase and the role of myosin light chain phosphorylation in skeletal muscle.
    Stull JT; Kamm KE; Vandenboom R
    Arch Biochem Biophys; 2011 Jun; 510(2):120-8. PubMed ID: 21284933
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulatory light chain phosphorylation increases eccentric contraction-induced injury in skinned fast-twitch fibers.
    Childers MK; McDonald KS
    Muscle Nerve; 2004 Feb; 29(2):313-7. PubMed ID: 14755499
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional and Molecular Characterisation of Heart Failure Progression in Mice and the Role of Myosin Regulatory Light Chains in the Recovery of Cardiac Muscle Function.
    Markandran K; Yu H; Song W; Lam DTUH; Madathummal MC; Ferenczi MA
    Int J Mol Sci; 2021 Dec; 23(1):. PubMed ID: 35008512
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Myosin light chain kinase activation and calcium sensitization in smooth muscle in vivo.
    Mizuno Y; Isotani E; Huang J; Ding H; Stull JT; Kamm KE
    Am J Physiol Cell Physiol; 2008 Aug; 295(2):C358-64. PubMed ID: 18524939
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of work cycle frequency on the potentiation of dynamic force in mouse fast twitch skeletal muscle.
    Caterini D; Gittings W; Huang J; Vandenboom R
    J Exp Biol; 2011 Dec; 214(Pt 23):3915-23. PubMed ID: 22071182
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The force dependence of isometric and concentric potentiation in mouse muscle with and without skeletal myosin light chain kinase.
    Gittings W; Aggarwal H; Stull JT; Vandenboom R
    Can J Physiol Pharmacol; 2015 Jan; 93(1):23-32. PubMed ID: 25412230
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shortening speed dependent force potentiation is attenuated but not eliminated in skeletal muscles without myosin phosphorylation.
    Gittings W; Bunda J; Vandenboom R
    J Muscle Res Cell Motil; 2017 Apr; 38(2):157-162. PubMed ID: 28251466
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Piperine enhances contractile force in slow- and fast-twitch muscle.
    Herskind J; Ørtenblad N; Cheng AJ; Pedersen P; Overgaard K
    J Physiol; 2024 Jun; 602(12):2807-2822. PubMed ID: 38762879
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.