These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 23401574)

  • 21. Fast-to-Slow Transition of Skeletal Muscle Contractile Function and Corresponding Changes in Myosin Heavy and Light Chain Formation in the R6/2 Mouse Model of Huntington's Disease.
    Hering T; Braubach P; Landwehrmeyer GB; Lindenberg KS; Melzer W
    PLoS One; 2016; 11(11):e0166106. PubMed ID: 27820862
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effect of muscle length on post-tetanic potentiation of C57BL/6 and skMLCK
    Angelidis A; Vandenboom R
    J Muscle Res Cell Motil; 2022 Sep; 43(3):99-111. PubMed ID: 35771335
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Physiological signalling to myosin phosphatase targeting subunit-1 phosphorylation in ileal smooth muscle.
    Gao N; Chang AN; He W; Chen CP; Qiao YN; Zhu M; Kamm KE; Stull JT
    J Physiol; 2016 Jun; 594(12):3209-25. PubMed ID: 26847850
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Myosin regulatory light chain modulates the Ca2+ dependence of the kinetics of tension development in skeletal muscle fibers.
    Patel JR; Diffee GM; Moss RL
    Biophys J; 1996 May; 70(5):2333-40. PubMed ID: 9172757
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Measured and modeled properties of mammalian skeletal muscle. I. The effects of post-activation potentiation on the time course and velocity dependencies of force production.
    Brown IE; Loeb GE
    J Muscle Res Cell Motil; 1999 Aug; 20(5-6):443-56. PubMed ID: 10555063
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Myosin phosphorylation potentiates steady-state work output without altering contractile economy of mouse fast skeletal muscles.
    Gittings W; Bunda J; Vandenboom R
    J Exp Biol; 2018 Jan; 221(Pt 2):. PubMed ID: 29122950
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A myosin-based mechanism for stretch activation and its possible role revealed by varying phosphate concentration in fast and slow mouse skeletal muscle fibers.
    Straight CR; Bell KM; Slosberg JN; Miller MS; Swank DM
    Am J Physiol Cell Physiol; 2019 Dec; 317(6):C1143-C1152. PubMed ID: 31532715
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phosphorylation of myosin and twitch potentiation in fatigued skeletal muscle.
    Vandenboom R; Houston ME
    Can J Physiol Pharmacol; 1996 Dec; 74(12):1315-21. PubMed ID: 9047041
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Potentiation of in vitro concentric work in mouse fast muscle.
    Grange RW; Vandenboom R; Xeni J; Houston ME
    J Appl Physiol (1985); 1998 Jan; 84(1):236-43. PubMed ID: 9451641
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Lack of influence of estrogen on myosin phosphorylation and post-tetanic potentiation in muscles from young adult C57BL mice.
    Fillion M; Tiidus PM; Vandenboom R
    Can J Physiol Pharmacol; 2019 Aug; 97(8):729-737. PubMed ID: 30889364
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cellular and whole muscle studies of activity dependent potentiation.
    MacIntosh BR
    Adv Exp Med Biol; 2010; 682():315-42. PubMed ID: 20824534
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Threshold for force potentiation associated with skeletal myosin phosphorylation.
    Vandenboom R; Grange RW; Houston ME
    Am J Physiol; 1993 Dec; 265(6 Pt 1):C1456-62. PubMed ID: 8279509
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of adrenaline on the post-tetanic potentiation in mouse skeletal muscle.
    Decostre V; Gillis JM; Gailly P
    J Muscle Res Cell Motil; 2000 Apr; 21(3):247-54. PubMed ID: 10952172
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Coexistence of potentiation and fatigue in skeletal muscle.
    Rassier DE; Macintosh BR
    Braz J Med Biol Res; 2000 May; 33(5):499-508. PubMed ID: 10775880
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Myosin content of individual human muscle fibers isolated by laser capture microdissection.
    Stuart CA; Stone WL; Howell ME; Brannon MF; Hall HK; Gibson AL; Stone MH
    Am J Physiol Cell Physiol; 2016 Mar; 310(5):C381-9. PubMed ID: 26676053
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Myosin light chain phosphorylation and isometric twitch potentiation in intact human muscle.
    Houston ME; Green HJ; Stull JT
    Pflugers Arch; 1985 Apr; 403(4):348-52. PubMed ID: 3839303
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Caffeine attenuates contraction-induced diminutions of the intracellular calcium transient in mouse lumbrical muscle ex vivo.
    Smith IC; Vandenboom R; Tupling AR
    Can J Physiol Pharmacol; 2019 May; 97(5):429-435. PubMed ID: 30661369
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phosphorylation of rabbit skeletal muscle myosin in situ.
    Moore RL; Houston ME; Iwamoto GA; Stull JT
    J Cell Physiol; 1985 Nov; 125(2):301-5. PubMed ID: 4055914
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nerve influence on myosin light chain phosphorylation in slow and fast skeletal muscles.
    Bozzo C; Spolaore B; Toniolo L; Stevens L; Bastide B; Cieniewski-Bernard C; Fontana A; Mounier Y; Reggiani C
    FEBS J; 2005 Nov; 272(22):5771-85. PubMed ID: 16279942
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Increased force development rates of fatigued mouse skeletal muscle are graded to myosin light chain phosphate content.
    Vandenboom R; Xeni J; Bestic NM; Houston ME
    Am J Physiol; 1997 Jun; 272(6 Pt 2):R1980-4. PubMed ID: 9227617
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.