These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 23401614)

  • 61. Calcium response to retinohypothalamic tract synaptic transmission in suprachiasmatic nucleus neurons.
    Irwin RP; Allen CN
    J Neurosci; 2007 Oct; 27(43):11748-57. PubMed ID: 17959816
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Responses of the suprachiasmatic nucleus to retinohypothalamic tract volleys in a slice preparation of the mouse hypothalamus.
    Cahill GM; Menaker M
    Brain Res; 1989 Feb; 479(1):65-75. PubMed ID: 2924155
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Regulation of EPSPs by the synaptic activation of GABAB autoreceptors in rat hippocampus.
    Davies CH; Collingridge GL
    J Physiol; 1996 Oct; 496 ( Pt 2)(Pt 2):451-70. PubMed ID: 8910229
    [TBL] [Abstract][Full Text] [Related]  

  • 64. The suprachiasmatic nucleus exhibits diurnal variations in spontaneous excitatory postsynaptic activity.
    Lundkvist GB; Kristensson K; Hill RH
    J Biol Rhythms; 2002 Feb; 17(1):40-51. PubMed ID: 11837948
    [TBL] [Abstract][Full Text] [Related]  

  • 65. GABAB-Receptor-mediated currents in interneurons of the dentate-hilus border.
    Mott DD; Li Q; Okazaki MM; Turner DA; Lewis DV
    J Neurophysiol; 1999 Sep; 82(3):1438-50. PubMed ID: 10482760
    [TBL] [Abstract][Full Text] [Related]  

  • 66. GABA transporters control GABAergic neurotransmission in the mouse subplate.
    Unichenko P; Kirischuk S; Luhmann HJ
    Neuroscience; 2015 Sep; 304():217-27. PubMed ID: 26232716
    [TBL] [Abstract][Full Text] [Related]  

  • 67. GABA release from suprachiasmatic nucleus terminals is necessary for the light-induced inhibition of nocturnal melatonin release in the rat.
    Kalsbeek A; Cutrera RA; Van Heerikhuize JJ; Van Der Vliet J; Buijs RM
    Neuroscience; 1999; 91(2):453-61. PubMed ID: 10366002
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Synaptic input from the retina to the suprachiasmatic nucleus changes with the light-dark cycle in the Syrian hamster.
    Cui LN; Dyball RE
    J Physiol; 1996 Dec; 497 ( Pt 2)(Pt 2):483-93. PubMed ID: 8961189
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The physiological role of pre- and postsynaptic GABA(B) receptors in membrane excitability and synaptic transmission of neurons in the rat's dorsal cortex of the inferior colliculus.
    Sun H; Wu SH
    Neuroscience; 2009 Apr; 160(1):198-211. PubMed ID: 19409201
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Profound disturbances of pre- and postsynaptic GABAB-receptor-mediated processes in region CA1 in a chronic model of temporal lobe epilepsy.
    Mangan PS; Lothman EW
    J Neurophysiol; 1996 Aug; 76(2):1282-96. PubMed ID: 8871236
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Activation of GABA
    Ramakrishna Y; Sadeghi SG
    J Neurophysiol; 2020 Sep; 124(3):962-972. PubMed ID: 32816581
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Neuropeptide Y blocks GABAB-induced phase-shifts of the suprachiasmatic circadian clock in vitro.
    Biggs KR; Prosser RA
    Brain Res; 1999 Mar; 821(2):461-6. PubMed ID: 10064833
    [TBL] [Abstract][Full Text] [Related]  

  • 73. GABA(B) receptor-mediated presynaptic inhibition reverses inter-columnar covariability of synaptic actions by intracortical axons in the rat barrel cortex.
    Sato H; Toyoda H; Saito M; Kobayashi M; Althof D; Kulik Á; Kang Y
    Eur J Neurosci; 2013 Jan; 37(2):190-202. PubMed ID: 23134516
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Calcium channel involvement in GABAB receptor-mediated inhibition of GABA release in area CA1 of the rat hippocampus.
    Doze VA; Cohen GA; Madison DV
    J Neurophysiol; 1995 Jul; 74(1):43-53. PubMed ID: 7472344
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Inhibition of transmitter release shortens the duration of the excitatory synaptic current at a calyceal synapse.
    Otis TS; Trussell LO
    J Neurophysiol; 1996 Nov; 76(5):3584-8. PubMed ID: 8930299
    [TBL] [Abstract][Full Text] [Related]  

  • 76. GABAB receptor-mediated modulation of presynaptic currents and excitatory transmission at a fast central synapse.
    Isaacson JS
    J Neurophysiol; 1998 Sep; 80(3):1571-6. PubMed ID: 9744963
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Gating of retinal inputs through the suprachiasmatic nucleus: role of excitatory neurotransmission.
    Mikkelsen JD; Larsen PJ; Mick G; Vrang N; Ebling FJ; Maywood ES; Hastings MH; Møller M
    Neurochem Int; 1995 Sep; 27(3):263-72. PubMed ID: 8520465
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Pharmacological characterization of pre- and postsynaptic GABAB receptors in the deep nuclei of rat cerebellar slices.
    Morishita W; Sastry BR
    Neuroscience; 1995 Oct; 68(4):1127-37. PubMed ID: 8544987
    [TBL] [Abstract][Full Text] [Related]  

  • 79. GABA
    Salio C; Merighi A; Bardoni R
    Mol Pain; 2017; 13():1744806917710041. PubMed ID: 28565998
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Baclofen acts in the central amygdala to reduce synaptic transmission and impair context fear conditioning.
    Delaney AJ; Crane JW; Holmes NM; Fam J; Westbrook RF
    Sci Rep; 2018 Jul; 8(1):9908. PubMed ID: 29967489
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.