These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 234019)

  • 1. Cobalt and ruthenium replacement for iron in adrenal iron-sulfur protein (adrenodoxin). Preparation and some properties.
    Sugiura Y; Ishizu K; Kimura T
    Biochemistry; 1975 Jan; 14(1):97-101. PubMed ID: 234019
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mössbauer studies of adrenodoxin. The mechanism of electron transfer in a hydroxylase iron-sulphur protein.
    Cammack R; Rao KK; Hall DO; Johnson CE
    Biochem J; 1971 Dec; 125(3):849-56. PubMed ID: 4336161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies on nitrotyrosine-82 and aminotyrosine-82 derivatives of adrenodoxin. Effects of chemical modification on the complex formation with adrenodoxin reductase.
    Taniguchi T; Kimura T
    Biochemistry; 1976 Jun; 15(13):2849-53. PubMed ID: 181049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A rubredoxin-like mononuclear FeS4 derivative of adrenal iron-sulfur protein (adrenodoxin).
    Sugiura Y; Ishizu K; Kimura T
    Biochem Biophys Res Commun; 1974 Sep; 60(1):334-40. PubMed ID: 4370743
    [No Abstract]   [Full Text] [Related]  

  • 5. Laser Raman spectroscopy of adrenal iron-sulfur apoprotein: the anomalous tyrosine residue at position 82.
    Bicknell-Brown E; Lim BT; Kimura T
    Biochem Biophys Res Commun; 1981 Jul; 101(1):298-305. PubMed ID: 7284006
    [No Abstract]   [Full Text] [Related]  

  • 6. Studies on NO2-Tyr82and NH2-Tyr82 derivatives of adrenodoxin. Effects of chemical modification on electron transferring activity.
    Taniguchi T; Kimura T
    Biochemistry; 1975 Dec; 14(26):5573-8. PubMed ID: 173389
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studies on adrenal steroid hydroxylases. Anomalous fluorescence of a tyrosyl residue in adrenal iron-sulfur protein (adrenodoxin).
    Kimura T; Ting JJ; Huang JJ
    J Biol Chem; 1972 Jul; 247(14):4476-9. PubMed ID: 5065125
    [No Abstract]   [Full Text] [Related]  

  • 8. Preparation and partial characterization of iron-sulfur, iron-selenium, and iron-tellurium complexes of bovine serum albumin.
    Arakawa S; Kimura T
    Biochim Biophys Acta; 1979 Oct; 580(2):382-91. PubMed ID: 229912
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Environment of the iron-sulfur chromophore in adrenodoxin studied by EPR and ENDOR spectroscopy.
    Mukai K; Kimura T; Helbert J; Kevan L
    Biochim Biophys Acta; 1973 Jan; 295(1):49-56. PubMed ID: 4346437
    [No Abstract]   [Full Text] [Related]  

  • 10. Tetrahedral iron in the active center of plant ferredoxins and beef adrenodoxin.
    Eaton WA; Palmer G; Fee JA; Kimura T; Lovenberg W
    Proc Natl Acad Sci U S A; 1971 Dec; 68(12):3015-20. PubMed ID: 4332004
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative studies on adrenal iron-sulfur protein and its selenium derivatives by electron nuclear double resonance.
    Bowman M; Kevan L; Mukai K; Kimura T
    Biochim Biophys Acta; 1973 Dec; 328(2):244-51. PubMed ID: 4359869
    [No Abstract]   [Full Text] [Related]  

  • 12. Electron paramagnetic resonance studies on the selenium-replaced derivatives of adrenodoxin: the presence of the one selenium-one sulfur compound.
    Mukai K; Huang JJ; Kimura T
    Biochem Biophys Res Commun; 1973 Jan; 50(1):105-10. PubMed ID: 4345891
    [No Abstract]   [Full Text] [Related]  

  • 13. Characterization and N-terminal amino acid sequence of multiple ferredoxins in kidney and adrenal mitochondria.
    Driscoll WJ; Omdahl JL
    Eur J Biochem; 1989 Oct; 185(1):181-7. PubMed ID: 2553401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Co(II) derivatives of Cu,Zn-superoxide dismutase with the cobalt bound in the place of copper. A new spectroscopic tool for the study of the active site.
    Desideri A; Cocco D; Calabrese L; Rotilio G
    Biochim Biophys Acta; 1984 Mar; 785(3):111-7. PubMed ID: 6322852
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cluster-iron substitution is related to structural and functional features of adrenodoxin mutants and to their redox states.
    Iametti S; Uhlmann H; Ragg E; Sala N; Grinberg A; Beckert V; Bernhardt R; Bonomi F
    Eur J Biochem; 1998 Feb; 251(3):673-81. PubMed ID: 9490040
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation and spectroscopic characterization of a coupled binuclear center in cobalt(II)-substituted hemocyanin.
    Bubacco L; Magliozzo RS; Beltramini M; Salvato B; Peisach J
    Biochemistry; 1992 Sep; 31(38):9294-303. PubMed ID: 1327111
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studies on adrenal steroid hydroxylases: optical absorption spectroscopy of adrenal iron-sulfur protein (adrenodoxin) and its apoprotein.
    Kimura T; Huang JJ
    Arch Biochem Biophys; 1970 Apr; 137(2):357-64. PubMed ID: 5439301
    [No Abstract]   [Full Text] [Related]  

  • 18. Anomalous tyrosine emission at 331 nm in adrenal two iron and two labile-sulfur protein (adrenodoxin): a possible tyrosine exciplex.
    Kimura T; Ting J
    Biochem Biophys Res Commun; 1971 Dec; 45(5):1227-31. PubMed ID: 5135506
    [No Abstract]   [Full Text] [Related]  

  • 19. Studies on human lactoferrin by electron paramagnetic resonance, fluorescence, and resonance Raman spectroscopy.
    Ainscough EW; Brodie AM; Plowman JE; Bloor SJ; Loehr JS; Loehr TM
    Biochemistry; 1980 Aug; 19(17):4072-9. PubMed ID: 6250582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectroscopic and saturation magnetization properties of the manganese- and cobalt-substituted Fur (ferric uptake regulation) protein from Escherichia coli.
    Adrait A; Jacquamet L; Le Pape L; Gonzalez de Peredo A; Aberdam D; Hazemann JL; Latour JM; Michaud-Soret I
    Biochemistry; 1999 May; 38(19):6248-60. PubMed ID: 10320354
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.