These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 23402003)

  • 1. [Comparative structural and functional characteristics of different forms of Saccharomyces cerevisiae red pigment and its synthetic analogue].
    Amen TP; Mikhaĭlov EV; Alenin VV; Artemov AV; Dement'ev PA; Khodorkovskiĭ MA; Artamonov TO; Kuznetsova IM; Soĭdla TR; Nevzgliadova OV
    Tsitologiia; 2012; 54(11):853-61. PubMed ID: 23402003
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [The effect of red pigment of Saccharomyces cerevisiae on insulin fibril formation in vitro].
    Mikhaĭlova EV; Artemov AV; Snigirevskaia ES; Artamonova TO; Khodorkovskiĭ MA; Soĭdla TR; Nevzgliadova OV
    Tsitologiia; 2011; 53(10):808-14. PubMed ID: 22232938
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of red pigment on the amyloidization of yeast proteins.
    Nevzglyadova OV; Kuznetsova IM; Mikhailova EV; Artamonova TO; Artemov AV; Mittenberg AG; Kostyleva EI; Turoverov KK; Khodorkovskii MA; Soidla TR
    Yeast; 2011 Jul; 28(7):505-26. PubMed ID: 21547947
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Template-directed self-assembly and growth of insulin amyloid fibrils.
    Ha C; Park CB
    Biotechnol Bioeng; 2005 Jun; 90(7):848-55. PubMed ID: 15803463
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [The effect of red pigment on amyloidization of yeast proteins].
    Nevzgliadova OV; Artemov AV; Mittenberg AG; Mikhaĭlova EV; Kuznetsova IM; Turoverov KK; Soĭdla TR
    Tsitologiia; 2010; 52(1):80-93. PubMed ID: 20302019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural characterization of the fibrillar form of the yeast Saccharomyces cerevisiae prion Ure2p.
    Bousset L; Redeker V; Decottignies P; Dubois S; Le Maréchal P; Melki R
    Biochemistry; 2004 May; 43(17):5022-32. PubMed ID: 15109261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Packing density and structural heterogeneity of insulin amyloid fibrils measured by AFM nanoindentation.
    Guo S; Akhremitchev BB
    Biomacromolecules; 2006 May; 7(5):1630-6. PubMed ID: 16677048
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High pressure promotes circularly shaped insulin amyloid.
    Jansen R; Grudzielanek S; Dzwolak W; Winter R
    J Mol Biol; 2004 Apr; 338(2):203-6. PubMed ID: 15066425
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Asymmetric amyloid fibril elongation: a new perspective on a symmetric world.
    Heldt CL; Zhang S; Belfort G
    Proteins; 2011 Jan; 79(1):92-8. PubMed ID: 20941707
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vortex-induced formation of insulin amyloid superstructures probed by time-lapse atomic force microscopy and circular dichroism spectroscopy.
    Loksztejn A; Dzwolak W
    J Mol Biol; 2010 Jan; 395(3):643-55. PubMed ID: 19891974
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chiral bifurcation in aggregating insulin: an induced circular dichroism study.
    Loksztejn A; Dzwolak W
    J Mol Biol; 2008 May; 379(1):9-16. PubMed ID: 18439622
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lability landscape and protease resistance of human insulin amyloid: a new insight into its molecular properties.
    Malisauskas M; Weise C; Yanamandra K; Wolf-Watz M; Morozova-Roche L
    J Mol Biol; 2010 Feb; 396(1):60-74. PubMed ID: 19913026
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic self-assembly of insulin monomers into amyloid fibrils on a solid surface.
    Lee JS; Um E; Park JK; Park CB
    Langmuir; 2008 Jul; 24(14):7068-71. PubMed ID: 18549255
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Noncooperative dimethyl sulfoxide-induced dissection of insulin fibrils: toward soluble building blocks of amyloid.
    Loksztejn A; Dzwolak W
    Biochemistry; 2009 Jun; 48(22):4846-51. PubMed ID: 19385641
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conjugated polyelectrolytes: conformation-sensitive optical probes for detection of amyloid fibril formation.
    Nilsson KP; Herland A; Hammarström P; Inganäs O
    Biochemistry; 2005 Mar; 44(10):3718-24. PubMed ID: 15751948
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation of low-dimensional crystalline nucleus region during insulin amyloidogenesis process.
    Amdursky N; Gazit E; Rosenman G
    Biochem Biophys Res Commun; 2012 Mar; 419(2):232-7. PubMed ID: 22333569
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fibrillar beta-lactoglobulin gels: Part 1. Fibril formation and structure.
    Gosal WS; Clark AH; Ross-Murphy SB
    Biomacromolecules; 2004; 5(6):2408-19. PubMed ID: 15530058
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural regulation of a peptide-conjugated graft copolymer: a simple model for amyloid formation.
    Koga T; Taguchi K; Kobuke Y; Kinoshita T; Higuchi M
    Chemistry; 2003 Mar; 9(5):1146-56. PubMed ID: 12596151
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of protein sequence and amino acid composition in amyloid formation: scrambling and backward reading of IAPP amyloid fibrils.
    Sabaté R; Espargaró A; de Groot NS; Valle-Delgado JJ; Fernàndez-Busquets X; Ventura S
    J Mol Biol; 2010 Nov; 404(2):337-52. PubMed ID: 20887731
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pancreatic beta-cell granule peptides form heteromolecular complexes which inhibit islet amyloid polypeptide fibril formation.
    Jaikaran ET; Nilsson MR; Clark A
    Biochem J; 2004 Feb; 377(Pt 3):709-16. PubMed ID: 14565847
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.