These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 23402101)

  • 1. DIVA vaccination strategies for avian influenza virus.
    Suarez DL
    Avian Dis; 2012 Dec; 56(4 Suppl):836-44. PubMed ID: 23402101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control and prevention of avian influenza in an evolving scenario.
    Capua I; Marangon S
    Vaccine; 2007 Jul; 25(30):5645-52. PubMed ID: 17169466
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diagnosing avian influenza infection in vaccinated populations by systems for differentiating infected from vaccinated animals (DIVA).
    Capua I; Cattoli G
    Dev Biol (Basel); 2007; 130():137-43. PubMed ID: 18411945
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Overview of avian influenza DIVA test strategies.
    Suarez DL
    Biologicals; 2005 Dec; 33(4):221-6. PubMed ID: 16257543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differentiation of infected and vaccinated animals (DIVA) using the NS1 protein of avian influenza virus.
    Avellaneda G; Mundt E; Lee CW; Jadhao S; Suarez DL
    Avian Dis; 2010 Mar; 54(1 Suppl):278-86. PubMed ID: 20521645
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A heterologous neuraminidase subtype strategy for the differentiation of infected and vaccinated animals (DIVA) for avian influenza virus using an alternative neuraminidase inhibition test.
    Avellaneda G; Sylte MJ; Lee CW; Suarez DL
    Avian Dis; 2010 Mar; 54(1 Suppl):272-7. PubMed ID: 20521644
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The use of vaccination as an option for the control of avian influenza.
    Capua I; Marangon S
    Avian Pathol; 2003 Aug; 32(4):335-43. PubMed ID: 17585456
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vaccination of gallinaceous poultry for H5N1 highly pathogenic avian influenza: current questions and new technology.
    Spackman E; Swayne DE
    Virus Res; 2013 Dec; 178(1):121-32. PubMed ID: 23524326
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Current status and future needs in diagnostics and vaccines for high pathogenicity avian influenza.
    Swayne DE; Spackman E
    Dev Biol (Basel); 2013; 135():79-94. PubMed ID: 23689886
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative efficacy of North American and antigenically matched reverse genetics derived H5N9 DIVA marker vaccines against highly pathogenic Asian H5N1 avian influenza viruses in chickens.
    Jadhao SJ; Lee CW; Sylte M; Suarez DL
    Vaccine; 2009 Oct; 27(44):6247-60. PubMed ID: 19686695
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Avian influenza vaccination in North America: strategies and difficulties.
    Suarez DL; Lee CW; Swayne DE
    Dev Biol (Basel); 2006; 124():117-24. PubMed ID: 16447502
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generation of reassortant influenza vaccines by reverse genetics that allows utilization of a DIVA (Differentiating Infected from Vaccinated Animals) strategy for the control of avian influenza.
    Lee CW; Senne DA; Suarez DL
    Vaccine; 2004 Aug; 22(23-24):3175-81. PubMed ID: 15297071
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of vaccines and vaccination on global control of avian influenza.
    Swayne DE
    Avian Dis; 2012 Dec; 56(4 Suppl):818-28. PubMed ID: 23402099
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prevention and control of highly pathogenic avian influenza with particular reference to H5N1.
    Capua I; Cattoli G
    Virus Res; 2013 Dec; 178(1):114-20. PubMed ID: 23611921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generation and evaluation of an H9N1 influenza vaccine derived by reverse genetics that allows utilization of a DIVA strategy for control of H9N2 avian influenza.
    Wu R; Chen Q; Zheng L; Chen J; Sui Z; Guan Y; Chen Z
    Arch Virol; 2009; 154(8):1203-10. PubMed ID: 19543688
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New DIVA vaccine for the protection of poultry against H5 highly pathogenic avian influenza viruses irrespective of the N-subtype.
    Peeters B; de Boer SM; Tjeerdsma G; Moormann R; Koch G
    Vaccine; 2012 Nov; 30(49):7078-83. PubMed ID: 23036502
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental challenge of chicken vaccinated with commercially available H5 vaccines reveals loss of protection to some highly pathogenic avian influenza H5N1 strains circulating in Hong Kong/China.
    Connie Leung YH; Luk G; Sia SF; Wu YO; Ho CK; Chow KC; Tang SC; Guan Y; Malik Peiris JS
    Vaccine; 2013 Aug; 31(35):3536-42. PubMed ID: 23791547
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of tetanus toxoid as a differentiating infected from vaccinated animals (DIVA) strategy for sero-surveillance of avian influenza virus vaccination in poultry.
    James CM; Foong YY; Mansfield JP; Fenwick SG; Ellis TM
    Vaccine; 2007 Aug; 25(31):5892-901. PubMed ID: 17583393
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Economic issues in vaccination against highly pathogenic avian influenza in developing countries.
    McLeod A; Rushton J; Riviere-Cinnamond A; Brandenburg B; Hinrichs J; Loth L
    Dev Biol (Basel); 2007; 130():63-72. PubMed ID: 18411936
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generation of avian influenza reassortant viruses of the H7N5 subtype as potential vaccine candidates to be used in the framework of a "DIVA" vaccination strategy.
    Beato MS; Rigoni M; Milani A; Capua I
    Avian Dis; 2007 Mar; 51(1 Suppl):479-80. PubMed ID: 17494613
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.