BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 2340223)

  • 1. Vertebral body trabecular density at the thoracolumbar junction using quantitative computed tomography. A post-mortem study.
    Singer KP; Breidahl PD
    Acta Radiol; 1990 Jan; 31(1):37-40. PubMed ID: 2340223
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of thoracic and lumbar vertebral body compressive strength: correlations with bone mineral density and vertebral region.
    Singer K; Edmondston S; Day R; Breidahl P; Price R
    Bone; 1995 Aug; 17(2):167-74. PubMed ID: 8554926
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The relationship between bone mineral density, vertebral body shape and spinal curvature in the elderly thoracolumbar spine: an in vitro study.
    Edmondston SJ; Singer KP; Price RI; Day RE; Breidahl PD
    Br J Radiol; 1994 Oct; 67(802):969-75. PubMed ID: 8000841
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [An evaluation of bone mineral mass and trabecular distribution on cross sections of thoracic and lumbar vertebral bodies].
    Matsui M
    Nihon Seikeigeka Gakkai Zasshi; 1991 Jan; 65(1):9-17. PubMed ID: 2040827
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determinants and heterogeneity of mechanical competence throughout the thoracolumbar spine of elderly women and men.
    Eckstein F; Fischbeck M; Kuhn V; Link TM; Priemel M; Lochmüller EM
    Bone; 2004 Aug; 35(2):364-74. PubMed ID: 15268885
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlation of mechanical properties of vertebral trabecular bone with equivalent mineral density as measured by computed tomography.
    Lang SM; Moyle DD; Berg EW; Detorie N; Gilpin AT; Pappas NJ; Reynolds JC; Tkacik M; Waldron RL
    J Bone Joint Surg Am; 1988 Dec; 70(10):1531-8. PubMed ID: 3198678
    [TBL] [Abstract][Full Text] [Related]  

  • 7. QCT measures of bone strength at the thoracic and lumbar spine: the Framingham Study.
    Samelson EJ; Christiansen BA; Demissie S; Broe KE; Louie-Gao Q; Cupples LA; Roberts BJ; Manoharam R; D'Agostino J; Lang T; Kiel DP; Bouxsein ML
    J Bone Miner Res; 2012 Mar; 27(3):654-63. PubMed ID: 22143959
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bone mineral density of the thoracolumbar spine in relation to burst fractures: a quantitative computed tomography study.
    Dai LY; Wang XY; Wang CG; Jiang LS; Xu HZ
    Eur Spine J; 2006 Dec; 15(12):1817-22. PubMed ID: 16741742
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Does thoracic or lumbar spine bone architecture predict vertebral failure strength more accurately than density?
    Lochmüller EM; Pöschl K; Würstlin L; Matsuura M; Müller R; Link TM; Eckstein F
    Osteoporos Int; 2008 Apr; 19(4):537-45. PubMed ID: 17912574
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomechanical consequences of an isolated overload on the human vertebral body.
    Kopperdahl DL; Pearlman JL; Keaveny TM
    J Orthop Res; 2000 Sep; 18(5):685-90. PubMed ID: 11117287
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Experimental research on the quantitative computed tomographic prediction of the compressive strength of the thoracolumbar vertebrae].
    Biggemann M; Hilweg D; Brinckmann P
    Rofo; 1989 Sep; 151(3):322-5. PubMed ID: 2552526
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The predictive value of quantitative computed tomography for vertebral body compressive strength and ash density.
    Mosekilde L; Bentzen SM; Ortoft G; Jørgensen J
    Bone; 1989; 10(6):465-70. PubMed ID: 2624829
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human cancellous bone from T12-L1 vertebrae has unique microstructural and trabecular shear stress properties.
    Yeni YN; Kim DG; Divine GW; Johnson EM; Cody DD
    Bone; 2009 Jan; 44(1):130-6. PubMed ID: 18848654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative computed tomography-based predictions of vertebral strength in anterior bending.
    Buckley JM; Cheng L; Loo K; Slyfield C; Xu Z
    Spine (Phila Pa 1976); 2007 Apr; 32(9):1019-27. PubMed ID: 17450078
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Risk of vertebral insufficiency fractures in relation to compressive strength predicted by quantitative computed tomography.
    Biggemann M; Hilweg D; Seidel S; Horst M; Brinckmann P
    Eur J Radiol; 1991; 13(1):6-10. PubMed ID: 1832380
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhomogeneity of human vertebral cancellous bone: systematic density and structure patterns inside the vertebral body.
    Banse X; Devogelaer JP; Munting E; Delloye C; Cornu O; Grynpas M
    Bone; 2001 May; 28(5):563-71. PubMed ID: 11344057
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of regional variations of the trabecular bone properties on the compressive strength of human vertebral bodies.
    Kim DG; Hunt CA; Zauel R; Fyhrie DP; Yeni YN
    Ann Biomed Eng; 2007 Nov; 35(11):1907-13. PubMed ID: 17690983
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Noninvasive prediction of vertebral body compressive strength using nonlinear finite element method and an image based technique.
    Zeinali A; Hashemi B; Akhlaghpoor S
    Phys Med; 2010 Apr; 26(2):88-97. PubMed ID: 19781969
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bone mineral density of human female cervical and lumbar spines from quantitative computed tomography.
    Yoganandan N; Pintar FA; Stemper BD; Baisden JL; Aktay R; Shender BS; Paskoff G
    Spine (Phila Pa 1976); 2006 Jan; 31(1):73-6. PubMed ID: 16395180
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo assessment of lumbar vertebral strength in elderly women using computed tomography-based nonlinear finite element model.
    Imai K; Ohnishi I; Yamamoto S; Nakamura K
    Spine (Phila Pa 1976); 2008 Jan; 33(1):27-32. PubMed ID: 18165745
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.