BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 23402431)

  • 1. Isotopically induced variation in the stability of FMN-wrapped carbon nanotubes.
    Sharifi R; Abanulo DC; Papadimitrakopoulos F
    Langmuir; 2013 Jun; 29(24):7209-15. PubMed ID: 23402431
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Handedness enantioselection of carbon nanotubes using helical assemblies of flavin mononucleotide.
    Ju SY; Abanulo DC; Badalucco CA; Gascón JA; Papadimitrakopoulos F
    J Am Chem Soc; 2012 Aug; 134(32):13196-9. PubMed ID: 22871052
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and redox behavior of flavin mononucleotide-functionalized single-walled carbon nanotubes.
    Ju SY; Papadimitrakopoulos F
    J Am Chem Soc; 2008 Jan; 130(2):655-64. PubMed ID: 18081284
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selection of carbon nanotubes with specific chiralities using helical assemblies of flavin mononucleotide.
    Ju SY; Doll J; Sharma I; Papadimitrakopoulos F
    Nat Nanotechnol; 2008 Jun; 3(6):356-62. PubMed ID: 18654547
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Helical Assembly of Flavin Mononucleotides on Carbon Nanotubes as Multimodal Near-IR Hg(II)-Selective Probes.
    Park M; Hong KI; Jin SM; Lee E; Jang WD; Ju SY
    ACS Appl Mater Interfaces; 2019 Feb; 11(8):8400-8411. PubMed ID: 30724070
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum electronic stability in selective enrichment of carbon nanotubes.
    Ogunro OO; Wang XQ
    Nano Lett; 2009 Mar; 9(3):1034-8. PubMed ID: 19236011
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of glutamate-59 hydrogen bonded to N(3)H of the flavin mononucleotide cofactor in the modulation of the redox potentials of the Clostridium beijerinckii flavodoxin. Glutamate-59 is not responsible for the pH dependency but contributes to the stabilization of the flavin semiquinone.
    Bradley LH; Swenson RP
    Biochemistry; 1999 Sep; 38(38):12377-86. PubMed ID: 10493805
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stabilization of aqueous carbon nanotube dispersions using surfactants: insights from molecular dynamics simulations.
    Tummala NR; Morrow BH; Resasco DE; Striolo A
    ACS Nano; 2010 Dec; 4(12):7193-204. PubMed ID: 21128672
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of Enantiomeric Purity of Single-Wall Carbon Nanotubes Using Flavin Mononucleotide.
    Wei X; Tanaka T; Hirakawa T; Yomogida Y; Kataura H
    J Am Chem Soc; 2017 Nov; 139(45):16068-16071. PubMed ID: 29069542
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differences in proton-coupled electron-transfer reactions of flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) between buffered and unbuffered aqueous solutions.
    Tan SL; Kan JM; Webster RD
    J Phys Chem B; 2013 Nov; 117(44):13755-66. PubMed ID: 24079606
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of tight flavin mononucleotide wrapping and its binding affinity on carbon nanotube covalent reactivities.
    Sim J; Oh H; Koo E; Ju SY
    Phys Chem Chem Phys; 2013 Nov; 15(44):19169-79. PubMed ID: 24105353
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of hydrogen bonding interactions to N(3)H of the flavin mononucleotide cofactor in the modulation of the redox potentials of the Clostridium beijerinckii flavodoxin.
    Bradley LH; Swenson RP
    Biochemistry; 2001 Jul; 40(30):8686-95. PubMed ID: 11467928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The midpoint potentials for the oxidized-semiquinone couple for Gly57 mutants of the Clostridium beijerinckii flavodoxin correlate with changes in the hydrogen-bonding interaction with the proton on N(5) of the reduced flavin mononucleotide cofactor as measured by NMR chemical shift temperature dependencies.
    Chang FC; Swenson RP
    Biochemistry; 1999 Jun; 38(22):7168-76. PubMed ID: 10353827
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A molecular dynamics simulation of the flavin mononucleotide-RNA aptamer complex.
    Schneider C; Sühnel J
    Biopolymers; 1999 Sep; 50(3):287-302. PubMed ID: 10397790
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flavin-protein interactions in flavocytochrome b2 as studied by NMR after reconstitution of the enzyme with 13C- and 15N-labelled flavin.
    Fleischmann G; Lederer F; Müller F; Bacher A; Rüterjans H
    Eur J Biochem; 2000 Aug; 267(16):5156-67. PubMed ID: 10931200
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermodynamics of the quasi-epitaxial flavin assembly around various-chirality carbon nanotubes.
    Sharifi R; Samaraweera M; Gascón JA; Papadimitrakopoulos F
    J Am Chem Soc; 2014 May; 136(20):7452-63. PubMed ID: 24821307
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of the C=O stretching vibrations of FMN and peptide backbone by 13C-labeling of the LOV2 domain of Adiantum phytochrome3.
    Iwata T; Nozaki D; Sato Y; Sato K; Nishina Y; Shiga K; Tokutomi S; Kandori H
    Biochemistry; 2006 Dec; 45(51):15384-91. PubMed ID: 17176060
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insights into the mode of flavin mononucleotide binding and catalytic mechanism of bacterial chromate reductases: A molecular dynamics simulation study.
    Pradhan SK; Singh NR; Dehury B; Panda D; Modi MK; Thatoi H
    J Cell Biochem; 2019 Oct; 120(10):16990-17005. PubMed ID: 31131470
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Affinity-mediated sorting order reversal of single-walled carbon nanotubes in density gradient ultracentrifugation.
    Jang M; Kim S; Jeong H; Ju SY
    Nanotechnology; 2016 Oct; 27(41):41LT01. PubMed ID: 27595315
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and application of isotopically labeled flavin nucleotides.
    Mishanina TV; Kohen A
    J Labelled Comp Radiopharm; 2015 Jul; 58(9):370-5. PubMed ID: 26149960
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.