BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 23403125)

  • 1. Identification of the general transcription factor Yin Yang 1 as a novel and specific binding partner for S6 kinase 2.
    Ismail HM; Myronova O; Tsuchiya Y; Niewiarowski A; Tsaneva I; Gout I
    Cell Signal; 2013 May; 25(5):1054-63. PubMed ID: 23403125
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of ribosomal S6 kinase 2 by mammalian target of rapamycin.
    Park IH; Bachmann R; Shirazi H; Chen J
    J Biol Chem; 2002 Aug; 277(35):31423-9. PubMed ID: 12087098
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of S6K2, a novel kinase homologous to S6K1.
    Lee-Fruman KK; Kuo CJ; Lippincott J; Terada N; Blenis J
    Oncogene; 1999 Sep; 18(36):5108-14. PubMed ID: 10490847
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of monoclonal antibodies specific to ribosomal protein S6 kinase 2.
    Savinska L; Skorokhod O; Klipa O; Gout I; Filonenko V
    Hybridoma (Larchmt); 2012 Aug; 31(4):289-94. PubMed ID: 22894784
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation and function of ribosomal protein S6 kinase (S6K) within mTOR signalling networks.
    Magnuson B; Ekim B; Fingar DC
    Biochem J; 2012 Jan; 441(1):1-21. PubMed ID: 22168436
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutational analysis of ribosomal S6 kinase 2 shows differential regulation of its kinase activity from that of ribosomal S6 kinase 1.
    Phin S; Kupferwasser D; Lam J; Lee-Fruman KK
    Biochem J; 2003 Jul; 373(Pt 2):583-91. PubMed ID: 12713446
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ribosomal S6 kinase 2 inhibition by a potent C-terminal repressor domain is relieved by mitogen-activated protein-extracellular signal-regulated kinase kinase-regulated phosphorylation.
    Martin KA; Schalm SS; Romanelli A; Keon KL; Blenis J
    J Biol Chem; 2001 Mar; 276(11):7892-8. PubMed ID: 11108720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SKAR is a specific target of S6 kinase 1 in cell growth control.
    Richardson CJ; Bröenstrup M; Fingar DC; Jülich K; Ballif BA; Gygi S; Blenis J
    Curr Biol; 2004 Sep; 14(17):1540-9. PubMed ID: 15341740
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Involvement of heterogeneous ribonucleoprotein F in the regulation of cell proliferation via the mammalian target of rapamycin/S6 kinase 2 pathway.
    Goh ET; Pardo OE; Michael N; Niewiarowski A; Totty N; Volkova D; Tsaneva IR; Seckl MJ; Gout I
    J Biol Chem; 2010 May; 285(22):17065-76. PubMed ID: 20308064
    [TBL] [Abstract][Full Text] [Related]  

  • 10. S6 kinase 2 is bound to chromatin-nuclear matrix cellular fractions and is able to phosphorylate histone H3 at threonine 45 in vitro and in vivo.
    Ismail HM; Hurd PJ; Khalil MI; Kouzarides T; Bannister A; Gout I
    J Cell Biochem; 2014 Jun; 115(6):1048-62. PubMed ID: 23564320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. S6K1(-/-)/S6K2(-/-) mice exhibit perinatal lethality and rapamycin-sensitive 5'-terminal oligopyrimidine mRNA translation and reveal a mitogen-activated protein kinase-dependent S6 kinase pathway.
    Pende M; Um SH; Mieulet V; Sticker M; Goss VL; Mestan J; Mueller M; Fumagalli S; Kozma SC; Thomas G
    Mol Cell Biol; 2004 Apr; 24(8):3112-24. PubMed ID: 15060135
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The polyproline-motif of S6K2: eIF5A translational dependence and importance for protein-protein interactions.
    Meneguello L; Barbosa NM; Pereira KD; Proença ARG; Tamborlin L; Simabuco FM; Iwai LK; Zanelli CF; Valentini SR; Luchessi AD
    J Cell Biochem; 2019 Apr; 120(4):6015-6025. PubMed ID: 30320934
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The ubiquitination of ribosomal S6 kinases is independent from the mitogen-induced phosphorylation/activation of the kinase.
    Gwalter J; Wang ML; Gout I
    Int J Biochem Cell Biol; 2009 Apr; 41(4):828-33. PubMed ID: 18786649
    [TBL] [Abstract][Full Text] [Related]  

  • 14. mGluR-dependent long-term depression is associated with increased phosphorylation of S6 and synthesis of elongation factor 1A but remains expressed in S6K-deficient mice.
    Antion MD; Hou L; Wong H; Hoeffer CA; Klann E
    Mol Cell Biol; 2008 May; 28(9):2996-3007. PubMed ID: 18316404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of ribosomal S6 kinase 2 by effectors of the phosphoinositide 3-kinase pathway.
    Martin KA; Schalm SS; Richardson C; Romanelli A; Keon KL; Blenis J
    J Biol Chem; 2001 Mar; 276(11):7884-91. PubMed ID: 11108711
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of S6K2 as a centrosome-located kinase.
    Rossi R; Pester JM; McDowell M; Soza S; Montecucco A; Lee-Fruman KK
    FEBS Lett; 2007 Aug; 581(21):4058-64. PubMed ID: 17678899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure of S6 kinase 1 determines whether raptor-mTOR or rictor-mTOR phosphorylates its hydrophobic motif site.
    Ali SM; Sabatini DM
    J Biol Chem; 2005 May; 280(20):19445-8. PubMed ID: 15809305
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Receptor association and tyrosine phosphorylation of S6 kinases.
    Rebholz H; Panasyuk G; Fenton T; Nemazanyy I; Valovka T; Flajolet M; Ronnstrand L; Stephens L; West A; Gout IT
    FEBS J; 2006 May; 273(9):2023-36. PubMed ID: 16640565
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cross-talk between the ERK and p70 S6 kinase (S6K) signaling pathways. MEK-dependent activation of S6K2 in cardiomyocytes.
    Wang L; Gout I; Proud CG
    J Biol Chem; 2001 Aug; 276(35):32670-7. PubMed ID: 11431469
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Features of fibronectin-dependent activation of ribosomal protein S6 kinase (S6K1 and S6K2)].
    Val'ovka TI; Filonenko VV; Velykyï MM; Drobot LB; Voterfill M; Matsuka HKh; Hut IT
    Ukr Biokhim Zh (1999); 2000; 72(3):31-7. PubMed ID: 11200472
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.