BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 23403199)

  • 1. Development of equations for predicting methane emissions from ruminants.
    Ramin M; Huhtanen P
    J Dairy Sci; 2013 Apr; 96(4):2476-2493. PubMed ID: 23403199
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of transition diets varying in dietary energy density on lactation performance and ruminal parameters of dairy cows.
    Rabelo E; Rezende RL; Bertics SJ; Grummer RR
    J Dairy Sci; 2003 Mar; 86(3):916-25. PubMed ID: 12703628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of dietary supplementation with 3-nitrooxypropanol on enteric methane production, rumen fermentation, and performance in young growing beef cattle offered a 50:50 forage:concentrate diet.
    Kirwan SF; Tamassia LFM; Walker ND; Karagiannis A; Kindermann M; Waters SM
    J Anim Sci; 2024 Jan; 102():. PubMed ID: 38038711
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of amount and ruminal degradability of protein on nutrient digestibility and production by cows fed tallow.
    Weigel DJ; Elliott JP; Clark JH
    J Dairy Sci; 1997 Jun; 80(6):1150-9. PubMed ID: 9201586
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Methane emissions and 13C composition from beef steers consuming binary C3-C4 diets.
    Jaramillo DM; Ruiz-Moreno M; Vendramini JMB; Sollenberger LE; DiLorenzo N; Queiroz LMD; Santos ERS; Garcia L; Abreu DS; Dubeux JCB
    J Anim Sci; 2023 Jan; 101():. PubMed ID: 37279326
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strategies for increasing energy density of dry cow diets.
    Rabelo E; Bertics SJ; Mackovic J; Grummer RR
    J Dairy Sci; 2001 Oct; 84(10):2240-9. PubMed ID: 11699456
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of replacing alfalfa silage with high moisture corn on nutrient utilization and milk production.
    Valadares Filho SC; Broderick GA; Valadares RF; Clayton MK
    J Dairy Sci; 2000 Jan; 83(1):106-14. PubMed ID: 10659970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pasture intake and substitution rate effects on nutrient digestion and nitrogen metabolism during continuous culture fermentation.
    Bargo F; Varga GA; Muller LD; Kolver ES
    J Dairy Sci; 2003 Apr; 86(4):1330-40. PubMed ID: 12741559
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exogenous fibrolytic enzymes promoted energy and nitrogen utilization and decreased CH4 emission per unit dry matter intake of tan sheep grazed a typical steppe by enhancing nutrient digestibility on China loess plateau.
    Shi H; Guo P; Zhou J; Wang Z; He M; Shi L; Huang X; Guo P; Guo Z; Zhang Y; Hou F
    J Anim Sci; 2023 Jan; 101():. PubMed ID: 37036172
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioactive metabolites of Asparagopsis stabilized in canola oil completely suppress methane emissions in beef cattle fed a feedlot diet.
    Cowley FC; Kinley RD; Mackenzie SL; Fortes MRS; Palmieri C; Simanungkalit G; Almeida AK; Roque BM
    J Anim Sci; 2024 Jan; 102():. PubMed ID: 38646666
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effective energy: a concept of energy utilization applied across species.
    Emmans GC
    Br J Nutr; 1994 Jun; 71(6):801-21. PubMed ID: 8031731
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increasing roughage quality by using alfalfa hay as a substitute for concentrate mitigates CH
    Wang C; Zhang C; Yan T; Chang S; Zhu W; Wanapat M; Hou F
    J Anim Physiol Anim Nutr (Berl); 2020 Jan; 104(1):22-31. PubMed ID: 31596014
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitrogen and energy utilization and methane emissions of sheep grazing on annual pasture vs. native pasture.
    Xie K; Liu F; Zhang C; Hou F
    J Anim Sci; 2024 Jan; 102():. PubMed ID: 38366060
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reducing GHG emissions through genetic improvement for feed efficiency: effects on economically important traits and enteric methane production.
    Basarab JA; Beauchemin KA; Baron VS; Ominski KH; Guan LL; Miller SP; Crowley JJ
    Animal; 2013 Jun; 7 Suppl 2(Suppl 2):303-15. PubMed ID: 23739472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biochar effect on sheep feed intake, growth rate and ruminant in vitro and in vivo methane production.
    Lind V; Sizmaz Ö; Demirtas A; Sudagidan M; Weldon S; Budai A; O'Toole A; Miladinovic DD; Jørgensen GM
    Animal; 2024 Jun; 18(6):101195. PubMed ID: 38850574
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nutrient digestibility and prediction of metabolizable energy in total mixed rations for ruminants.
    Boguhn J; Kluth H; Steinhöfel O; Peterhänsel M; Rodehutscord M
    Arch Tierernahr; 2003 Aug; 57(4):253-66. PubMed ID: 14533865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methane-suppressing effect of myristic acid in sheep as affected by dietary calcium and forage proportion.
    Machmüller A; Machmüller A; Soliva CR; Kreuzer M
    Br J Nutr; 2003 Sep; 90(3):529-40. PubMed ID: 13129458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A mechanistic model of whole-tract digestion and methanogenesis in the lactating dairy cow: model development, evaluation, and application.
    Mills JA; Dijkstra J; Bannink A; Cammell SB; Kebreab E; France J
    J Anim Sci; 2001 Jun; 79(6):1584-97. PubMed ID: 11424698
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Utilization of some fruit rinds in small ruminant feeding: nutritional characteristics determination.
    Kazemi M; Valizadeh R
    Trop Anim Health Prod; 2024 Apr; 56(4):144. PubMed ID: 38668765
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methane formation in faunated and ciliate-free cattle and its relationship with rumen volatile fatty acid proportions.
    Whitelaw FG; Eadie JM; Bruce LA; Shand WJ
    Br J Nutr; 1984 Sep; 52(2):261-75. PubMed ID: 6433970
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.