These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

361 related articles for article (PubMed ID: 23403214)

  • 1. Structural advances for the major facilitator superfamily (MFS) transporters.
    Yan N
    Trends Biochem Sci; 2013 Mar; 38(3):151-9. PubMed ID: 23403214
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural Biology of the Major Facilitator Superfamily Transporters.
    Yan N
    Annu Rev Biophys; 2015; 44():257-83. PubMed ID: 26098515
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding transport by the major facilitator superfamily (MFS): structures pave the way.
    Quistgaard EM; Löw C; Guettou F; Nordlund P
    Nat Rev Mol Cell Biol; 2016 Feb; 17(2):123-32. PubMed ID: 26758938
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy coupling mechanisms of MFS transporters.
    Zhang XC; Zhao Y; Heng J; Jiang D
    Protein Sci; 2015 Oct; 24(10):1560-79. PubMed ID: 26234418
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Eukaryotic major facilitator superfamily transporter modeling based on the prokaryotic GlpT crystal structure.
    Lemieux MJ
    Mol Membr Biol; 2007; 24(5-6):333-41. PubMed ID: 17710637
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Secondary Active Transporters.
    Bosshart PD; Fotiadis D
    Subcell Biochem; 2019; 92():275-299. PubMed ID: 31214990
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The structural basis of substrate translocation by the Escherichia coli glycerol-3-phosphate transporter: a member of the major facilitator superfamily.
    Lemieux MJ; Huang Y; Wang DN
    Curr Opin Struct Biol; 2004 Aug; 14(4):405-12. PubMed ID: 15313233
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ins and outs of major facilitator superfamily antiporters.
    Law CJ; Maloney PC; Wang DN
    Annu Rev Microbiol; 2008; 62():289-305. PubMed ID: 18537473
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lactose permease as a paradigm for membrane transport proteins (Review).
    Abramson J; Iwata S; Kaback HR
    Mol Membr Biol; 2004; 21(4):227-36. PubMed ID: 15371012
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Common folds and transport mechanisms of secondary active transporters.
    Shi Y
    Annu Rev Biophys; 2013; 42():51-72. PubMed ID: 23654302
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative Sequence-Function Analysis of the Major Facilitator Superfamily: The "Mix-and-Match" Method.
    Madej MG
    Methods Enzymol; 2015; 557():521-49. PubMed ID: 25950980
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Implications of Mycobacterium Major Facilitator Superfamily for Novel Measures against Tuberculosis.
    Wang R; Zhang Z; Xie L; Xie J
    Crit Rev Eukaryot Gene Expr; 2015; 25(4):315-21. PubMed ID: 26559092
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The alternating-access mechanism of MFS transporters arises from inverted-topology repeats.
    Radestock S; Forrest LR
    J Mol Biol; 2011 Apr; 407(5):698-715. PubMed ID: 21315728
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural comparison of lactose permease and the glycerol-3-phosphate antiporter: members of the major facilitator superfamily.
    Abramson J; Kaback HR; Iwata S
    Curr Opin Struct Biol; 2004 Aug; 14(4):413-9. PubMed ID: 15313234
    [TBL] [Abstract][Full Text] [Related]  

  • 15. No single irreplaceable acidic residues in the Escherichia coli secondary multidrug transporter MdfA.
    Sigal N; Molshanski-Mor S; Bibi E
    J Bacteriol; 2006 Aug; 188(15):5635-9. PubMed ID: 16855255
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural conservation in the major facilitator superfamily as revealed by comparative modeling.
    Vardy E; Arkin IT; Gottschalk KE; Kaback HR; Schuldiner S
    Protein Sci; 2004 Jul; 13(7):1832-40. PubMed ID: 15215526
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Promiscuity in multidrug recognition and transport: the bacterial MFS Mdr transporters.
    Lewinson O; Adler J; Sigal N; Bibi E
    Mol Microbiol; 2006 Jul; 61(2):277-84. PubMed ID: 16856936
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolutionary mix-and-match with MFS transporters II.
    Madej MG; Kaback HR
    Proc Natl Acad Sci U S A; 2013 Dec; 110(50):E4831-8. PubMed ID: 24259711
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and mechanism of the glycerol-3-phosphate transporter from Escherichia coli.
    Huang Y; Lemieux MJ; Song J; Auer M; Wang DN
    Science; 2003 Aug; 301(5633):616-20. PubMed ID: 12893936
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The nucleoside transport proteins, NupC and NupG, from Escherichia coli: specific structural motifs necessary for the binding of ligands.
    Patching SG; Baldwin SA; Baldwin AD; Young JD; Gallagher MP; Henderson PJ; Herbert RB
    Org Biomol Chem; 2005 Feb; 3(3):462-70. PubMed ID: 15678184
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.