These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 23403262)

  • 1. Seeking significance for transcutaneous spinal DC stimulation.
    Lamy JC; Boakye M
    Clin Neurophysiol; 2013 Jun; 124(6):1049-50. PubMed ID: 23403262
    [No Abstract]   [Full Text] [Related]  

  • 2. Modulation of spinal neuronal excitability by spinal direct currents and locomotion after spinal cord injury.
    Hubli M; Dietz V; Schrafl-Altermatt M; Bolliger M
    Clin Neurophysiol; 2013 Jun; 124(6):1187-95. PubMed ID: 23415451
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Propriospinal neurons involved in the control of locomotion: potential targets for repair strategies?
    Jordan LM; Schmidt BJ
    Prog Brain Res; 2002; 137():125-39. PubMed ID: 12440364
    [No Abstract]   [Full Text] [Related]  

  • 4. Non-invasive tools to promote spinal plasticity in humans.
    Lamy JC; Boakye M
    Clin Neurophysiol; 2011 Nov; 122(11):2114-5. PubMed ID: 21514881
    [No Abstract]   [Full Text] [Related]  

  • 5. Evidence for a spinal stepping generator in man.
    Bussel B; Roby-Brami A; Néris OR; Yakovleff A
    Paraplegia; 1996 Feb; 34(2):91-2. PubMed ID: 8835032
    [No Abstract]   [Full Text] [Related]  

  • 6. Is there a central pattern generator in man?
    Illis LS
    Paraplegia; 1995 May; 33(5):239-40. PubMed ID: 7630646
    [No Abstract]   [Full Text] [Related]  

  • 7. The cat model of spinal injury.
    Rossignol S; Chau C; Giroux N; Brustein E; Bouyer L; Marcoux J; Langlet C; Barthelémy D; Provencher J; Leblond H; Barbeau H; Reader TA
    Prog Brain Res; 2002; 137():151-68. PubMed ID: 12440366
    [No Abstract]   [Full Text] [Related]  

  • 8. Pattern generators and cortical maps in locomotion of spinal injured rats.
    Giszter S; Graziani V; Kargo W; Hockensmith G; Davies MR; Smeraski CS; Murray M
    Ann N Y Acad Sci; 1998 Nov; 860():554-5. PubMed ID: 9928361
    [No Abstract]   [Full Text] [Related]  

  • 9. Use-dependent plasticity in spinal stepping and standing.
    Edgerton VR; de Leon RD; Tillakaratne N; Recktenwald MR; Hodgson JA; Roy RR
    Adv Neurol; 1997; 72():233-47. PubMed ID: 8993702
    [No Abstract]   [Full Text] [Related]  

  • 10. Potential of adult mammalian lumbosacral spinal cord to execute and acquire improved locomotion in the absence of supraspinal input.
    Edgerton VR; Roy RR; Hodgson JA; Prober RJ; de Guzman CP; de Leon R
    J Neurotrauma; 1992 Mar; 9 Suppl 1():S119-28. PubMed ID: 1588602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Different forms of locomotion in the spinal lamprey.
    Hsu LJ; Orlovsky GN; Zelenin PV
    Eur J Neurosci; 2014 Jun; 39(12):2037-49. PubMed ID: 24641591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chapter 16--spinal plasticity in the recovery of locomotion.
    Rossignol S; Frigon A; Barrière G; Martinez M; Barthélemy D; Bouyer L; Bélanger M; Provencher J; Chau C; Brustein E; Barbeau H; Giroux N; Marcoux J; Langlet C; Alluin O
    Prog Brain Res; 2011; 188():229-41. PubMed ID: 21333814
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Editorial: Neuromodulatory Control of Spinal Function in Health and Disease.
    Noga BR; Hochman S; Hultborn H
    Front Neural Circuits; 2019; 13():84. PubMed ID: 32038179
    [No Abstract]   [Full Text] [Related]  

  • 14. Prolonged electrical stimulation over hip flexors increases locomotor output in human SCI.
    Wu M; Gordon K; Kahn JH; Schmit BD
    Clin Neurophysiol; 2011 Jul; 122(7):1421-8. PubMed ID: 21555239
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gait after spinal cord injury and the central pattern generator for locomotion.
    Pinter MM; Dimitrijevic MR
    Spinal Cord; 1999 Aug; 37(8):531-7. PubMed ID: 10455527
    [No Abstract]   [Full Text] [Related]  

  • 16. Spinal sensory circuits in motion.
    Böhm UL; Wyart C
    Curr Opin Neurobiol; 2016 Dec; 41():38-43. PubMed ID: 27573214
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a human neuro-musculo-skeletal model for investigation of spinal cord injury.
    Paul C; Bellotti M; Jezernik S; Curt A
    Biol Cybern; 2005 Sep; 93(3):153-70. PubMed ID: 16133587
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spinal and supraspinal plasticity after incomplete spinal cord injury: correlations between functional magnetic resonance imaging and engaged locomotor networks.
    Dobkin BH
    Prog Brain Res; 2000; 128():99-111. PubMed ID: 11105672
    [No Abstract]   [Full Text] [Related]  

  • 19. Spontaneous recovery of locomotion induced by remaining fibers after spinal cord transection in adult rats.
    You SW; Chen BY; Liu HL; Lang B; Xia JL; Jiao XY; Ju G
    Restor Neurol Neurosci; 2003; 21(1-2):39-45. PubMed ID: 12808201
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spinal cholinergic neurons activated during locomotion: localization and electrophysiological characterization.
    Huang A; Noga BR; Carr PA; Fedirchuk B; Jordan LM
    J Neurophysiol; 2000 Jun; 83(6):3537-47. PubMed ID: 10848569
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.