BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 23403426)

  • 1. GRL-0519, a novel oxatricyclic ligand-containing nonpeptidic HIV-1 protease inhibitor (PI), potently suppresses replication of a wide spectrum of multi-PI-resistant HIV-1 variants in vitro.
    Amano M; Tojo Y; Salcedo-Gómez PM; Campbell JR; Das D; Aoki M; Xu CX; Rao KV; Ghosh AK; Mitsuya H
    Antimicrob Agents Chemother; 2013 May; 57(5):2036-46. PubMed ID: 23403426
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel HIV-1 protease inhibitors (PIs) containing a bicyclic P2 functional moiety, tetrahydropyrano-tetrahydrofuran, that are potent against multi-PI-resistant HIV-1 variants.
    Ide K; Aoki M; Amano M; Koh Y; Yedidi RS; Das D; Leschenko S; Chapsal B; Ghosh AK; Mitsuya H
    Antimicrob Agents Chemother; 2011 Apr; 55(4):1717-27. PubMed ID: 21282450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorine Modifications Contribute to Potent Antiviral Activity against Highly Drug-Resistant HIV-1 and Favorable Blood-Brain Barrier Penetration Property of Novel Central Nervous System-Targeting HIV-1 Protease Inhibitors
    Amano M; Yedidi RS; Salcedo-Gómez PM; Hayashi H; Hasegawa K; Martyr CD; Ghosh AK; Mitsuya H
    Antimicrob Agents Chemother; 2022 Feb; 66(2):e0171521. PubMed ID: 34978889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational Studies of a Mechanism for Binding and Drug Resistance in the Wild Type and Four Mutations of HIV-1 Protease with a GRL-0519 Inhibitor.
    Hu G; Ma A; Dou X; Zhao L; Wang J
    Int J Mol Sci; 2016 May; 17(6):. PubMed ID: 27240358
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Loss of protease dimerization inhibition activity of darunavir is associated with the acquisition of resistance to darunavir by HIV-1.
    Koh Y; Aoki M; Danish ML; Aoki-Ogata H; Amano M; Das D; Shafer RW; Ghosh AK; Mitsuya H
    J Virol; 2011 Oct; 85(19):10079-89. PubMed ID: 21813613
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing multidrug-resistance and protein-ligand interactions with oxatricyclic designed ligands in HIV-1 protease inhibitors.
    Ghosh AK; Xu CX; Rao KV; Baldridge A; Agniswamy J; Wang YF; Weber IT; Aoki M; Miguel SG; Amano M; Mitsuya H
    ChemMedChem; 2010 Nov; 5(11):1850-4. PubMed ID: 20827746
    [No Abstract]   [Full Text] [Related]  

  • 7. HIV-1 protease inhibitors from inverse design in the substrate envelope exhibit subnanomolar binding to drug-resistant variants.
    Altman MD; Ali A; Reddy GS; Nalam MN; Anjum SG; Cao H; Chellappan S; Kairys V; Fernandes MX; Gilson MK; Schiffer CA; Rana TM; Tidor B
    J Am Chem Soc; 2008 May; 130(19):6099-113. PubMed ID: 18412349
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activities of atazanavir (BMS-232632) against a large panel of human immunodeficiency virus type 1 clinical isolates resistant to one or more approved protease inhibitors.
    Colonno RJ; Thiry A; Limoli K; Parkin N
    Antimicrob Agents Chemother; 2003 Apr; 47(4):1324-33. PubMed ID: 12654666
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wide variation in susceptibility of transmitted/founder HIV-1 subtype C Isolates to protease inhibitors and association with in vitro replication efficiency.
    Sutherland KA; Collier DA; Claiborne DT; Prince JL; Deymier MJ; Goldstein RA; Hunter E; Gupta RK
    Sci Rep; 2016 Nov; 6():38153. PubMed ID: 27901085
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and synthesis of potent HIV-1 protease inhibitors incorporating hexahydrofuropyranol-derived high affinity P(2) ligands: structure-activity studies and biological evaluation.
    Ghosh AK; Chapsal BD; Baldridge A; Steffey MP; Walters DE; Koh Y; Amano M; Mitsuya H
    J Med Chem; 2011 Jan; 54(2):622-34. PubMed ID: 21194227
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ABT-378, a highly potent inhibitor of the human immunodeficiency virus protease.
    Sham HL; Kempf DJ; Molla A; Marsh KC; Kumar GN; Chen CM; Kati W; Stewart K; Lal R; Hsu A; Betebenner D; Korneyeva M; Vasavanonda S; McDonald E; Saldivar A; Wideburg N; Chen X; Niu P; Park C; Jayanti V; Grabowski B; Granneman GR; Sun E; Japour AJ; Leonard JM; Plattner JJ; Norbeck DW
    Antimicrob Agents Chemother; 1998 Dec; 42(12):3218-24. PubMed ID: 9835517
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acquired HIV-1 Protease Conformational Flexibility Associated with Lopinavir Failure May Shape the Outcome of Darunavir Therapy after Antiretroviral Therapy Switch.
    Eche S; Kumar A; Sonela N; Gordon ML
    Biomolecules; 2021 Mar; 11(4):. PubMed ID: 33805099
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of HIV-1 CRF_01 A/E protease inhibitor resistance: structural determinants for maintaining sensitivity and developing resistance to atazanavir.
    Clemente JC; Coman RM; Thiaville MM; Janka LK; Jeung JA; Nukoolkarn S; Govindasamy L; Agbandje-McKenna M; McKenna R; Leelamanit W; Goodenow MM; Dunn BM
    Biochemistry; 2006 May; 45(17):5468-77. PubMed ID: 16634628
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel HIV PR inhibitors with C4-substituted bis-THF and bis-fluoro-benzyl target the two active site mutations of highly drug resistant mutant PR
    Agniswamy J; Kneller DW; Ghosh AK; Weber IT
    Biochem Biophys Res Commun; 2021 Aug; 566():30-35. PubMed ID: 34111669
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potent HIV-1 Protease Inhibitors Containing Carboxylic and Boronic Acids: Effect on Enzyme Inhibition and Antiviral Activity and Protein-Ligand X-ray Structural Studies.
    Ghosh AK; Xia Z; Kovela S; Robinson WL; Johnson ME; Kneller DW; Wang YF; Aoki M; Takamatsu Y; Weber IT; Mitsuya H
    ChemMedChem; 2019 Nov; 14(21):1863-1872. PubMed ID: 31549492
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design, synthesis, and biological and structural evaluations of novel HIV-1 protease inhibitors to combat drug resistance.
    Parai MK; Huggins DJ; Cao H; Nalam MN; Ali A; Schiffer CA; Tidor B; Rana TM
    J Med Chem; 2012 Jul; 55(14):6328-41. PubMed ID: 22708897
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preclinical characterization of a non-peptidomimetic HIV protease inhibitor with improved metabolic stability.
    Mulato A; Lansdon E; Aoyama R; Voigt J; Lee M; Liclican A; Lee G; Singer E; Stafford B; Gong R; Murray B; Chan J; Lee J; Xu Y; Ahmadyar S; Gonzalez A; Cho A; Stepan GJ; Schmitz U; Schultz B; Marchand B; Brumshtein B; Wang R; Yu H; Cihlar T; Xu L; Yant SR
    Antimicrob Agents Chemother; 2024 Apr; 68(4):e0137323. PubMed ID: 38380945
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potent antiviral HIV-1 protease inhibitor combats highly drug resistant mutant PR20.
    Kneller DW; Agniswamy J; Ghosh AK; Weber IT
    Biochem Biophys Res Commun; 2019 Oct; 519(1):61-66. PubMed ID: 31474336
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Piperidine scaffold as the novel P2-ligands in cyclopropyl-containing HIV-1 protease inhibitors: Structure-based design, synthesis, biological evaluation and docking study.
    Zhou H; Zhu M; Ma L; Zhou J; Dong B; Zhang G; Cen S; Wang Y; Wang J
    PLoS One; 2020; 15(7):e0235483. PubMed ID: 32697773
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure-Based Design of Highly Potent HIV-1 Protease Inhibitors Containing New Tricyclic Ring P2-Ligands: Design, Synthesis, Biological, and X-ray Structural Studies.
    Ghosh AK; Kovela S; Osswald HL; Amano M; Aoki M; Agniswamy J; Wang YF; Weber IT; Mitsuya H
    J Med Chem; 2020 May; 63(9):4867-4879. PubMed ID: 32348139
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.