These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 2340344)

  • 1. Probing the structure of diacetylenic phospholipid tubules with fluorescent lipophiles.
    Plant AL; Benson DM; Trusty GL
    Biophys J; 1990 May; 57(5):925-33. PubMed ID: 2340344
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chiral molecular self-assembly of phospholipid tubules: a circular dichroism study.
    Spector MS; Easwaran KR; Jyothi G; Selinger JV; Singh A; Schnur JM
    Proc Natl Acad Sci U S A; 1996 Nov; 93(23):12943-6. PubMed ID: 8917523
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrolyte effects on bilayer tubule formation by a diacetylenic phospholipid.
    Chappell JS; Yager P
    Biophys J; 1991 Oct; 60(4):952-65. PubMed ID: 1742462
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two photon fluorescence microscopy of coexisting lipid domains in giant unilamellar vesicles of binary phospholipid mixtures.
    Bagatolli LA; Gratton E
    Biophys J; 2000 Jan; 78(1):290-305. PubMed ID: 10620293
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of alcohol chain length on tubule formation in 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine.
    Ratna BR; Baral-Tosh S; Kahn B; Schnur JM; Rudolph AS
    Chem Phys Lipids; 1992 Nov; 63(1-2):47-53. PubMed ID: 1486660
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of polymerizable lipid bilayers. I--1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine, a tubule-forming phosphatidylcholine.
    Rhodes DG; Blechner SL; Yager P; Schoen PE
    Chem Phys Lipids; 1988 Nov; 49(1-2):39-47. PubMed ID: 3233710
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calorimetric studies of lipid tubule formation from ethanol-water solutions.
    Rudolph AS; Testoff MA; Shashidar R
    Biochim Biophys Acta; 1992 Jul; 1127(2):186-90. PubMed ID: 1643105
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Orientation of lipid tubules by a magnetic field.
    Rosenblatt C; Yager P; Schoen PE
    Biophys J; 1987 Aug; 52(2):295-301. PubMed ID: 3663833
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A temperature study of diacetylenic phosphatidylcholine vesicles.
    Jendrasiak GL; Ribeiro AA; Nagumo MA; Schoen PE
    Biochim Biophys Acta; 1994 Sep; 1194(2):233-8. PubMed ID: 7918537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phospholipid/protein cones.
    Mishra BK; Thomas BN
    J Am Chem Soc; 2002 Jun; 124(24):6866-71. PubMed ID: 12059207
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Poly(ethylene glycol)-induced and temperature-dependent phase separation in fluid binary phospholipid membranes.
    Lehtonen JY; Kinnunen PK
    Biophys J; 1995 Feb; 68(2):525-35. PubMed ID: 7696506
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of bilayer structures derived from diacetylenic phosphocholines containing oxygen linker beta to diacetylene.
    Singh A; Markowitz MA; Tsao LI
    Chem Phys Lipids; 1992 Dec; 63(3):191-201. PubMed ID: 1493614
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monolayer study of mixtures of diacetylenic phosphatidylcholine and phospholipids containing metal-chelating iminodiacetic acid headgroup.
    Markowitz MA; Puranik DB; Singh A
    Chem Phys Lipids; 1995 May; 76(1):63-71. PubMed ID: 7788800
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorescent probe partitioning in GUVs of binary phospholipid mixtures: implications for interpreting phase behavior.
    Juhasz J; Davis JH; Sharom FJ
    Biochim Biophys Acta; 2012 Jan; 1818(1):19-26. PubMed ID: 21945563
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lipid-lipid and lipid-protein interactions as studied with a novel type of fluorescent fatty acid and phospholipid probes.
    Stoffel W; Michaelis G
    Hoppe Seylers Z Physiol Chem; 1976 Jan; 357(1):21-33. PubMed ID: 765259
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lipid bilayer discs and banded tubules: photoinduced lipid sorting in ternary mixtures.
    Yuan J; Hira SM; Strouse GF; Hirst LS
    J Am Chem Soc; 2008 Feb; 130(6):2067-72. PubMed ID: 18211072
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultraviolet irradiation of diacetylenic liposomes as a strategy to improve size stability and to alter protein binding without cytotoxicity enhancement.
    Temprana CF; Amor MS; Femia AL; Gasparri J; Taira MC; del Valle Alonso S
    J Liposome Res; 2011 Jun; 21(2):141-50. PubMed ID: 20560742
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure of lipid tubules formed from a polymerizable lecithin.
    Yager P; Schoen PE; Davies C; Price R; Singh A
    Biophys J; 1985 Dec; 48(6):899-906. PubMed ID: 19431600
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation and properties of a network gel formed from mixtures of diacetylenic and short-chain phosphocholine lipids.
    Markowitz MA; Singh A; Chang EL
    Biochem Biophys Res Commun; 1994 Aug; 203(1):296-305. PubMed ID: 8074670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural characterization of photopolymerizable binary liposomes containing diacetylenic and saturated phospholipids.
    Temprana CF; Duarte EL; Taira MC; Lamy MT; del Valle Alonso S
    Langmuir; 2010 Jun; 26(12):10084-92. PubMed ID: 20355709
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.