These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

937 related articles for article (PubMed ID: 23403451)

  • 41. A three-dimensional hierarchical Fe2O3@NiO core/shell nanorod array on carbon cloth: a new class of anode for high-performance lithium-ion batteries.
    Xiong QQ; Tu JP; Xia XH; Zhao XY; Gu CD; Wang XL
    Nanoscale; 2013 Sep; 5(17):7906-12. PubMed ID: 23851378
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Facile and fast synthesis of porous TiO2 spheres for use in lithium ion batteries.
    Wang HE; Jin J; Cai Y; Xu JM; Chen DS; Zheng XF; Deng Z; Li Y; Bello I; Su BL
    J Colloid Interface Sci; 2014 Mar; 417():144-51. PubMed ID: 24407670
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Facile Synthesis of Ultrasmall CoS2 Nanoparticles within Thin N-Doped Porous Carbon Shell for High Performance Lithium-Ion Batteries.
    Wang Q; Zou R; Xia W; Ma J; Qiu B; Mahmood A; Zhao R; Yang Y; Xia D; Xu Q
    Small; 2015 Jun; 11(21):2511-7. PubMed ID: 25688868
    [TBL] [Abstract][Full Text] [Related]  

  • 44. High interfacial storage capability of porous NiMn2O4/C hierarchical tremella-like nanostructures as the lithium ion battery anode.
    Kang W; Tang Y; Li W; Yang X; Xue H; Yang Q; Lee CS
    Nanoscale; 2015 Jan; 7(1):225-31. PubMed ID: 25406536
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Porous nitrogen-doped carbon microspheres as anode materials for lithium ion batteries.
    Chen T; Pan L; Loh TA; Chua DH; Yao Y; Chen Q; Li D; Qin W; Sun Z
    Dalton Trans; 2014 Oct; 43(40):14931-5. PubMed ID: 24934560
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Porous Core-Shell CuCo
    Zheng T; Li G; Meng X; Li S; Ren M
    Chemistry; 2019 Jan; 25(3):885-891. PubMed ID: 30412335
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Double-shelled nanocapsules of V2O5-based composites as high-performance anode and cathode materials for Li ion batteries.
    Liu J; Xia H; Xue D; Lu L
    J Am Chem Soc; 2009 Sep; 131(34):12086-7. PubMed ID: 19705911
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Uniform carbon layer coated Mn3O4 nanorod anodes with improved reversible capacity and cyclic stability for lithium ion batteries.
    Wang C; Yin L; Xiang D; Qi Y
    ACS Appl Mater Interfaces; 2012 Mar; 4(3):1636-42. PubMed ID: 22394097
    [TBL] [Abstract][Full Text] [Related]  

  • 49. MnO@carbon core-shell nanowires as stable high-performance anodes for lithium-ion batteries.
    Li X; Xiong S; Li J; Liang X; Wang J; Bai J; Qian Y
    Chemistry; 2013 Aug; 19(34):11310-9. PubMed ID: 23843271
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Fabrication of free-standing ZnMn2O4 mesoscale tubular arrays for lithium-ion anodes with highly reversible lithium storage properties.
    Kim JG; Lee SH; Kim Y; Kim WB
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):11321-8. PubMed ID: 24125063
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Engineering single crystalline Mn3O4 nano-octahedra with exposed highly active {011} facets for high performance lithium ion batteries.
    Huang SZ; Jin J; Cai Y; Li Y; Tan HY; Wang HE; Van Tendeloo G; Su BL
    Nanoscale; 2014 Jun; 6(12):6819-27. PubMed ID: 24828316
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Carbon-Free Porous Zn
    Li HH; Wu XL; Zhang LL; Fan CY; Wang HF; Li XY; Sun HZ; Zhang JP; Yan Q
    ACS Appl Mater Interfaces; 2016 Nov; 8(46):31722-31728. PubMed ID: 27805360
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Thermal evaporation-induced anhydrous synthesis of Fe3O4-graphene composite with enhanced rate performance and cyclic stability for lithium ion batteries.
    Dong Y; Ma R; Hu M; Cheng H; Yang Q; Li YY; Zapien JA
    Phys Chem Chem Phys; 2013 May; 15(19):7174-81. PubMed ID: 23558566
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Interconnected MoO2 nanocrystals with carbon nanocoating as high-capacity anode materials for lithium-ion batteries.
    Zhou L; Wu HB; Wang Z; Lou XW
    ACS Appl Mater Interfaces; 2011 Dec; 3(12):4853-7. PubMed ID: 22077330
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Nb
    Liu S; Zhou J; Cai Z; Fang G; Pan A; Liang S
    Nanotechnology; 2016 Nov; 27(46):46LT01. PubMed ID: 27734810
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Hierarchical CoO/MnCo
    Ni L; Tang W; Liu X; Zhang N; Wang J; Liang S; Ma R; Qiu G
    Dalton Trans; 2018 Mar; 47(11):3775-3784. PubMed ID: 29445789
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Synthesis of single-crystalline spinel LiMn2 O4 Nanorods for lithium-ion batteries with high rate capability and long cycle life.
    Xie X; Su D; Sun B; Zhang J; Wang C; Wang G
    Chemistry; 2014 Dec; 20(51):17125-31. PubMed ID: 25339467
    [TBL] [Abstract][Full Text] [Related]  

  • 58. MOF-derived ultrafine MnO nanocrystals embedded in a porous carbon matrix as high-performance anodes for lithium-ion batteries.
    Zheng F; Xia G; Yang Y; Chen Q
    Nanoscale; 2015 Jun; 7(21):9637-45. PubMed ID: 25955439
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Hierarchical LiZnVO4@C nanostructures with enhanced cycling stability for lithium-ion batteries.
    Zeng L; Huang X; Zheng C; Qian Q; Chen Q; Wei M
    Dalton Trans; 2015 May; 44(17):7967-72. PubMed ID: 25826739
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Controlled synthesis of rod-like LiVMoO(6) nanocrystals for application in lithium-ion batteries.
    Liang Y; Han X; Cong C; Yi Z; Zhou L; Sun J; Zhang K; Zhou Y
    Nanotechnology; 2007 Apr; 18(13):135607. PubMed ID: 21730384
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 47.