These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
73 related articles for article (PubMed ID: 23403457)
1. Dose perturbations by electromagnetic transponders in the proton environment. Dolney D; McDonough J; Vapiwala N; Metz JM Phys Med Biol; 2013 Mar; 58(5):1495-505. PubMed ID: 23403457 [TBL] [Abstract][Full Text] [Related]
2. TOPAS Simulation of the Mevion S250 compact proton therapy unit. Prusator M; Ahmad S; Chen Y J Appl Clin Med Phys; 2017 May; 18(3):88-95. PubMed ID: 28444840 [TBL] [Abstract][Full Text] [Related]
3. Investigations of interference between electromagnetic transponders and wireless MOSFET dosimeters: a phantom study. Su Z; Zhang L; Ramakrishnan V; Hagan M; Anscher M Med Phys; 2011 May; 38(5):2450-4. PubMed ID: 21776780 [TBL] [Abstract][Full Text] [Related]
4. Dosimetric impact of tantalum markers used in the treatment of uveal melanoma with proton beam therapy. Newhauser WD; Koch NC; Fontenot JD; Rosenthal SJ; S Gombos D; Fitzek MM; Mohan R Phys Med Biol; 2007 Jul; 52(13):3979-90. PubMed ID: 17664589 [TBL] [Abstract][Full Text] [Related]
5. Dose perturbations and image artifacts caused by carbon-coated ceramic and stainless steel fiducials used in proton therapy for prostate cancer. Cheung J; Kudchadker RJ; Zhu XR; Lee AK; Newhauser WD Phys Med Biol; 2010 Dec; 55(23):7135-47. PubMed ID: 21076190 [TBL] [Abstract][Full Text] [Related]
6. The impact of uncertainties in the CT conversion algorithm when predicting proton beam ranges in patients from dose and PET-activity distributions. EspaƱa S; Paganetti H Phys Med Biol; 2010 Dec; 55(24):7557-71. PubMed ID: 21098912 [TBL] [Abstract][Full Text] [Related]
7. The effects of titanium mesh on passive-scattering proton dose. Lin H; Ding X; Yin L; Zhai H; Liu H; Kassaee A; Hill-Kayser C; Lustig RA; McDonough J; Both S Phys Med Biol; 2014 May; 59(10):N81-9. PubMed ID: 24778368 [TBL] [Abstract][Full Text] [Related]
8. Clinical implementation of full Monte Carlo dose calculation in proton beam therapy. Paganetti H; Jiang H; Parodi K; Slopsema R; Engelsman M Phys Med Biol; 2008 Sep; 53(17):4825-53. PubMed ID: 18701772 [TBL] [Abstract][Full Text] [Related]
9. Monte Carlo investigation of collimator scatter of proton-therapy beams produced using the passive scattering method. Titt U; Zheng Y; Vassiliev ON; Newhauser WD Phys Med Biol; 2008 Jan; 53(2):487-504. PubMed ID: 18185001 [TBL] [Abstract][Full Text] [Related]
10. Positional stability of electromagnetic transponders used for prostate localization and continuous, real-time tracking. Litzenberg DW; Willoughby TR; Balter JM; Sandler HM; Wei J; Kupelian PA; Cunningham AA; Bock A; Aubin M; Roach M; Shinohara K; Pouliot J Int J Radiat Oncol Biol Phys; 2007 Jul; 68(4):1199-206. PubMed ID: 17513060 [TBL] [Abstract][Full Text] [Related]
11. Creating a spread-out Bragg peak in proton beams. Jette D; Chen W Phys Med Biol; 2011 Jun; 56(11):N131-8. PubMed ID: 21558588 [TBL] [Abstract][Full Text] [Related]
12. 4D Monte Carlo simulation of proton beam scanning: modelling of variations in time and space to study the interplay between scanning pattern and time-dependent patient geometry. Paganetti H; Jiang H; Trofimov A Phys Med Biol; 2005 Mar; 50(5):983-90. PubMed ID: 15798270 [TBL] [Abstract][Full Text] [Related]
13. The effect of transponder motion on the accuracy of the Calypso Electromagnetic localization system. Murphy MJ; Eidens R; Vertatschitsch E; Wright JN Int J Radiat Oncol Biol Phys; 2008 Sep; 72(1):295-9. PubMed ID: 18722280 [TBL] [Abstract][Full Text] [Related]
14. Quantitative assessment of the physical potential of proton beam range verification with PET/CT. Knopf A; Parodi K; Paganetti H; Cascio E; Bonab A; Bortfeld T Phys Med Biol; 2008 Aug; 53(15):4137-51. PubMed ID: 18635897 [TBL] [Abstract][Full Text] [Related]
15. Transperineal ultrasound-guided implantation of electromagnetic transponders in the prostatic fossa for localization and tracking during external beam radiation therapy. Garsa AA; Verma V; Michalski JM; Gay HA Pract Radiat Oncol; 2014; 4(6):415-21. PubMed ID: 25407864 [TBL] [Abstract][Full Text] [Related]
16. Variations in the RBE for cell killing along the depth-dose profile of a modulated proton therapy beam. Britten RA; Nazaryan V; Davis LK; Klein SB; Nichiporov D; Mendonca MS; Wolanski M; Nie X; George J; Keppel C Radiat Res; 2013 Jan; 179(1):21-8. PubMed ID: 23148508 [TBL] [Abstract][Full Text] [Related]
17. Uncertainties and correction methods when modeling passive scattering proton therapy treatment heads with Monte Carlo. Bednarz B; Lu HM; Engelsman M; Paganetti H Phys Med Biol; 2011 May; 56(9):2837-54. PubMed ID: 21478569 [TBL] [Abstract][Full Text] [Related]
18. Monte Carlo simulations of the dosimetric impact of radiopaque fiducial markers for proton radiotherapy of the prostate. Newhauser W; Fontenot J; Koch N; Dong L; Lee A; Zheng Y; Waters L; Mohan R Phys Med Biol; 2007 Jun; 52(11):2937-52. PubMed ID: 17505081 [TBL] [Abstract][Full Text] [Related]
19. First experimental-based characterization of oxygen ion beam depth dose distributions at the Heidelberg Ion-Beam Therapy Center. Kurz C; Mairani A; Parodi K Phys Med Biol; 2012 Aug; 57(15):5017-34. PubMed ID: 22805295 [TBL] [Abstract][Full Text] [Related]
20. Monte Carlo simulations of a nozzle for the treatment of ocular tumours with high-energy proton beams. Newhauser W; Koch N; Hummel S; Ziegler M; Titt U Phys Med Biol; 2005 Nov; 50(22):5229-49. PubMed ID: 16264250 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]